Review for Final Exam Math 431

Example There exists infitely many primes of the form $2^{r} k+1, r \in \mathbf{N}$.
Proof. The case $r=1$ means that there are infinitely many odd primes which is certainly true. Suppose there are finitely many primes of the form $4 k+1$ then we we may label them all as $\left\{p_{1}, \ldots, p_{n}\right\}$. Let $N=\left(2 p_{1} \ldots p_{n}\right)^{2}+1$ and suppose that N is not a prime then there is a prime factor p, i.e., $N=0(\bmod p)$. It is clear that p is odd and $p \neq p_{i}$ for all $i=1, \ldots, n$; indeed we have

$$
\begin{equation*}
\left(2 p_{1} \ldots p_{n}\right)^{2}=-1(\bmod p) \tag{1}
\end{equation*}
$$

Squaring yields $\left(2 p_{1} \ldots p_{n}\right)^{4}=1(\bmod p)$. Let $d=(4, p-1)$ be the greatest common divisor then $d=1,2$ or 4 . By the Corollary $\left(2 p_{1} \ldots p_{n}\right)^{d}=1(\bmod p)$ hence, in view of $(1), d \neq 1$ and $d \neq 2$. Thus 4 divides $p-1$ and so p must be one of the p_{i}. This absurdity means that there must be infinitely many primes of the form $4 k+1$.

Problem 1. Complete the proof of the preceding Example.
Problem 2. The Fermats numbers are of the form $F_{n}=2^{2^{n}}+1$. it is easily checked that F_{n} is prime for $n=1,2,3$ and 4 . Use Fermat's Theorem and its Corollary to show that F_{5} is not a prime. (Hint: First show that if p is a prime factor of $2^{2^{n}}+1$ then $2^{2^{n+1}}=1(\bmod p)$. Next show that the GCD of 2^{n+1} and $p-1$ must be 2^{n+1}. This means that p must be of the form $2^{n+1} k+1$. Set $n=5$ and use brute force to find a prime factor of F_{5}.)
Problem 3. Find n so that $3^{n}+2^{n}$ is divisible by 7 .
Problem 4. If $m=p_{1} p_{2}$ where p_{1} and p_{2} are primes. Show that $\phi(1)+\phi\left(p_{1}\right)+\phi\left(p_{2}\right)+\phi\left(p_{1} p_{2}\right)=m$.
Problem 5. Extend the preceding problem to the case where m is the product of 3 primes.
Problem 6. Find another Carmichael number.
Problem 7. If $p-1=6 k$ how many solutions does the equation $x^{6 k}=1$ (respectively $x^{3 k}=$ $\left.1, x^{3 k}=-1\right)(\bmod p)$ have?
Problem 8. Find all positive integer solutions of the equation $x^{2}-3 y^{2}=1$.

