Math 436
December 16, 1999

FINAL

Show all your work. If you find you are doing a horrendous calculation, you are making a mistake or at least making the problem unnecessarily difficult. (Some calculations are necessary.)

1. (30 points) a) Solve:

$$
\begin{aligned}
& u_{t t}=u_{x x}, \quad t>0, \quad 0<x<2 \\
& u(x, 0)=0, \quad 0<x<2 \\
& u_{t}(x, 0)=x(2-x), \quad 0<x<2 \\
& u(0, t)=0=u(2, t), \quad t>0
\end{aligned}
$$

b) Show that your answer solves the problem.
c) Find $u\left(\frac{7}{4}, \frac{9}{4}\right)$. (Your answer should be a number.)
2. (15 points) Find the solution $u(\rho, \phi)$ of Laplace's equation in the disk $\rho<1$ and satisfying the boundary condition

$$
u(1, \phi)=68924 \sin 9815423 \phi-79021 \cos 4230874 \phi
$$

3. (30 points) a) Solve:

$$
\begin{aligned}
& u_{t}=\nabla^{2} u, \quad 0<x<2 \pi, 0<y<2 \pi, 0<t \\
& u(0, y, t)=0=u(2 \pi, y, t)=u(x, 0, t)=u(x, 2 \pi, t), \\
& u(x, y, 0)=x y(2 \pi-x)(2 \pi-y)
\end{aligned}
$$

b) Show that your answer solves the problem.

