Math 436
December 11, 2000

FINAL

Show all your work. If you find you are doing a horrendous calculation, you are making a mistake or at least making the problem unnecessarily difficult. (Some calculations are necessary.)

1. (25 points) a) Solve:

$$
\begin{aligned}
& u_{t t}=u_{x x}, \quad t>0, \quad 0<x<1, \\
& u(x, 0)=0, \quad 0<x<1 \\
& u_{t}(x, 0)=x(1-x), \quad 0<x<1, \\
& u(0, t)=0=u(1, t), \quad t>0 .
\end{aligned}
$$

b) Show that your answer solves the problem.
c) Find $u\left(\frac{3}{4}, \frac{5}{4}\right)$. (Your answer should be a number.)
2. (10 points) Find the solution $u(\rho, \phi)$ of Laplace's equation in the disk $\rho<1$ and satisfying the boundary condition

$$
u(1, \phi)=54917 \sin 6327145 \phi-72901 \cos 143587 \phi
$$

3. (20 points) a) Solve:

$$
\begin{aligned}
& u_{t}=\nabla^{2} u, \quad 0<x<\pi, 0<y<\pi, 0<t \\
& u(0, y, t)=0=u(\pi, y, t)=u(x, 0, t)=u(x, \pi, t) \\
& u(x, y, 0)=x y(\pi-x)(\pi-y)
\end{aligned}
$$

b) Show that your answer solves the problem.
4. (20 points) a) Solve:

$$
\begin{aligned}
u_{t} & =u_{x x}, \\
u(x, 0) & = \begin{cases}0, & x<-5,-\infty<x<\infty \\
x, & -5<x<8 \\
0, & 8<x\end{cases}
\end{aligned}
$$

b) Find $u(0, t)$. (Your answer should be a function of t which does not involve an integral.)
c) What is $\lim _{t \rightarrow 0^{+}} u(-5, t)$?

