Math 436

For Friday, October 13, write out correct solutions to all the in-class exam problems. Turn this in, together with your graded exam.

In doing this assignment, you may consult your course notes, homework, and the Partial Differential Equations and Boundary Value Problems by Pinsky. You may not consult any other books or notes. You may not discuss the exam with anyone except me.

Your final score on the exam will be calculated by adding $1 / 2$ the additional points you receive on your revised solutions to your original score.

Below is a copy of the exam.
On questions with yes or no answers, you must give a reason. Show all your work. If you use a theorem, state that you are using it. There is a table of Fourier series at the end of the exam, which you may find useful. If you find you are doing a horrendous calculation, you are making a mistake or at least making the problem unnecessarily difficult.

1. (10 points) Find the Fourier series of $\cos 7136481 x$ on the interval $-\pi<x<\pi$. (Hint: Think!)
2. (10 points) Does the Fourier sine series of x converge to x on $(0, \pi)$? If so, does it converge uniformly?
3. (15 points) Find:
a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$.
b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
4. (15 points) Find all separated solutions of:

$$
\begin{aligned}
& u_{t}=u_{z z}, \quad-\pi<z<\pi, t>0, \\
& u_{z}(-\pi, t)=0=u_{z}(\pi, t),
\end{aligned}
$$

