Math 436, Fall 2000

Homework

Assignment 1, due Wednesday, August 30
p. $2, \# 2,4,5$
p. $4, \# 2$ (Note: The function should be $u(x, y)=e^{k x} e^{k^{2} y}$.)
p. $9 \# 1,3$ (Note: In $\# 1$, the last condition should be $u_{x}(L ; t)=0$. In $\# 3$, the last term in the last condition should be $u(L ; t)$.)
p. 10 \#1-4
p. $13 \# 2,3$
p. 17 \#1,3
p. $21 \# 4$

Assignment 2, Due Wednesday, September 6
p. $33 \# 3,5,8,10,15$
p. $486 \# 4,5,6,8,9 \mathrm{a}, \mathrm{b}, 11 \mathrm{a}, \mathrm{b}, 12,14,15$

Assignment 3, Due Wednesday, September 13 p. $486 \# 4,5,6,8,9 \mathrm{a}, \mathrm{b}, 11 \mathrm{a}, \mathrm{b}, 12,14,15$
p. $476 \# 1,6,8,12,16,33$

Assignment 4, Due Wednesday, September 20
p. $44 \# 1,5,16 a, f, 17 a, f, 32,33$

Assignment 5, Due Wednesday, September 27
p. $54 \# 1,2,4,9,10,15,17,21,22$

Also, graph $D_{N}, N=5,10, \ldots, 50$ by computer.
Assignment 6, Due Wednesday, October 4
p. $69 \# 4,5,6,9,10,11,14$
p. $75 \# 1-3,7,8,11,12$ (Note: There's a typo in \#11(b). It should be

$$
-\phi(N) \leq \sum_{N+1}^{\infty} \phi(n)-\int_{N}^{\infty} \phi(x) d x
$$

As a result, the left side in $\# 12(\mathrm{a})$ should be $\frac{-1}{N^{s}}$.)
p. $83 \# 3-5$

Graph the partial sum $f_{2 N-1}$ of the Fourier series of the function

$$
f(x)=\left\{\begin{array}{rl}
1 & x \in(0, \pi] \\
-1 & x \in[-\pi, 0)
\end{array}\right.
$$

for $N=10,50$, and one significantly larger value.
Assignment 7, Due Wednesday, October 11
p. $108 \# 3,7,10,12,13,15,17,21$

Although these problems won't be due until after the midterm, some of them are a good reminder of some of the material in Chapter 0.

Assignment 8, Due Wednesday, October 25
p. 120 \#1,3,5-9,12,14
p. $133 \# 1,3,4,11$

Assignment 9, Due Wednesday, November 1
p. $150 \# 1,2,5,6,11,13,17,18$

Assignment 10, Due Wednesday, November 8
p. 168 \#1,3,4,7,9,13-15

Assignment 11, Due Wednesday, November 15
p. $181 \# 13,15,16,18,24$

Use Maple, Mathematica, or Matlab to graph the Poisson kernel for the unit disk (i.e., $R=1$) with $r=.5, r=.9, r=.99$ and $r=.999$. Make sure that your graphs are reasonable.

Here is a tentative list of the remaining assignments.
Assignment 12, Due Wednesday, November 22
p. $292 \# 5,7,13,16,19$

Assignment 13, Due Wednesday, December 6
p. $308 \# 6,7,8,15,17$

Use Maple, Mathematica or Matlab to graph the Gauss-Weierstrass kernel with $K=1$ for $t=10, t=1, t=.1, t=.01, t=.001, t=.0001, t=$ $.00001, t=.000001, t=.0000001$. Make sure that your graphs are reasonable.

