Mathematics 438
Fall Semester 2000
Final Exam (take-home)
Due December 15, 2000

This Exam is due December 15, 2000, 10:00 am.
Please hand in your answers to Professor Cao on or before December 15, 2000, 10:00 am.

Sign the pledge: "On my honor, I have neither given nor received unauthorized aid on this Exam":
GOOD LUCK

1. The equation $r=e^{-\theta}$ in polar coordinates describes a set of points in the plane as θ goes from 0 to ∞.
(a) Describe this set by a parametrized curve $\alpha:[0, \infty) \rightarrow \mathbb{R}^{2}$ with θ as the parameter.
(b) Compute the arc length parameter $s(\theta)=\int_{0}^{\theta}\left\|\alpha^{\prime}(t)\right\| d t$.
(c) Find $\lim _{\theta \rightarrow+\infty} s(\theta)$.
2. Let $\alpha:[0, L] \rightarrow \mathbb{R}^{2}$ be a smooth curve of the unit speed, $\alpha(t)=(x(t), y(t))$ and $\alpha_{c}(t)=$ $\alpha(t)+c N(t)$ where $N(t)=\left(-y^{\prime}(t), x^{\prime}(t)\right)$.
(a) Using the Frenet formulae (p19) to compute $N^{\prime}(t)$ and $\alpha_{c}^{\prime}(t)$.
(b) Is it true that the vectors $\alpha_{c}^{\prime}(t)$ and $\alpha^{\prime}(t)$ are parallel for all t and all c ? Justify your answer.
3. Let $\alpha(t)=\left(t, \frac{1+t}{t}, \frac{1-t^{2}}{t}\right)$.
(a) Compute $x-y+z=$?
(b) Computer the torsion τ.
(c) Why is $\tau=0$?
4. Show that the solution set of the equation

$$
x z+y z+x y=c
$$

is a regular surface for each value of the constant c , other than zero.
5. Take any Riemann metric of the form

$$
g=e^{2 \rho}\left(d u^{2}+d v^{2}\right)
$$

where $\rho=\rho(u, v)$ is a smooth function of u and v.
(a) Compute the connection ∇ of $g,\left(\nabla_{\frac{\partial}{\partial u}} \frac{\partial}{\partial u}, \nabla_{\frac{\partial}{\partial u}} \frac{\partial}{\partial v}\right.$, etc. $)$
b) Compute the Gaussian curvature of the metric g, (Hint, Use the formulae on p237, Exercise 1-2).
6. The crew of the Enterprise live in a world they believe to be Euclidean. We know it is not and the physical metric of their world is $g=e^{2 \rho}\left(d u^{2}+d v^{2}\right)$ with $e^{2 \rho}=\frac{1}{\left(1-r^{2}\right)^{2}}$ where $r^{2}=u^{2}+v^{2}$. Use Problem 5 b) to compute the Gaussian curvature of their world.
7. As a result of a celestial storm, the metric of the Enterprise world is changed utterly. Assume that the new metric \tilde{g} has Gaussian curvature $\tilde{K}<0$ everywhere. Let two space ships leave the same point in different directions, each traveling along a geodesic of \tilde{g}. Show that the two ships will never meet again.
(Hint: Apply Gauss-Bonnet formula (p. 268-269) to a geodesic "di-angle" in a surface with $K<0$).
8. The spaceship Enterprise moves in the disk $D=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$. The time it takes to travel along the curve $\alpha:[a, b] \rightarrow D$ is $T=\int_{a}^{b} \frac{\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}}{1-\left[\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}\right]} d t$. If $\alpha(t)=(r(t) \cos \theta(t), r(t) \sin \theta(t))$ show that T is greater than or equal to the time it takes to go from $(r(a), 0)$ to $(r(b), 0)$ along the x-axis. Deduce that the spaceship will never reach $\partial D=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ in finite time no matter what path it takes.
9. Let $\Psi(x, y)=(u(x, y), v(x, y))=\left(e^{x} \cos y, e^{x} \sin y\right), \Psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
a) Compute the matrix of the differential $\left.\Psi_{*}\right|_{(x, y)}=\frac{\partial(u, v)}{\partial(x, y)}$ for any point (x, y).
b) Is the map Ψ conformal ? Justify your answer.

