Math 441, Computability and Logic Midterm Exam 2, Spring 2000

CHOOSE 4 QUESTIONS.
REMARK: QUOTE ALL THEOREMS YOU ARE APPLYING.
1.a) Define the equivalence relation \approx_{L} for a language $L \subseteq \sum^{*}$.
1.b) Describe the minimal deterministic finite automaton(i.e., with minimal number of states) which accepts a regular language L.
2) Show that $L=\left\{w \in\{a, b\}^{*} \mid\right.$ the number of a-s appears in w is greater than the number b-s appears in $w\}$ is not regular.
3) Show that $L=\left\{w \in\{0,1, \ldots, 9\}^{*} \mid w\right.$ is a decimal notation for a number divisible by 6$\}$ is regular.
4) Find the standard deterministic finite automaton which accepts the language $L=\{w \in$ $\{a, b\}^{*} \mid$ aba is a substring of $\left.w\right\}$.
5) Prove or refute: If L is regular then $L^{\prime}=\{x y \mid x \in L$ and $y \notin L\}$ is regular.

