Mathematics 468
 Homework 1 solutions

1. Is the set

$$
\left\{(p, q) \in \mathbf{R}^{2} \mid p, q \in \mathbf{Q}\right\}
$$

countable?
Answer: Yes. Since the set of rationals \mathbf{Q} is countable, you can list them: $p_{1}, p_{2}, p_{3}, \ldots$ Now you can write down all of the ordered pairs of rationals in an array:

$$
\begin{array}{ccccc}
\left(p_{1}, p_{1}\right) & \left(p_{1}, p_{2}\right) & \left(p_{1}, p_{3}\right) & \left(p_{1}, p_{4}\right) & \ldots \\
\left(p_{2}, p_{1}\right) & \left(p_{2}, p_{2}\right) & \left(p_{2}, p_{3}\right) & \left(p_{2}, p_{4}\right) & \ldots \\
\left(p_{3}, p_{1}\right) & \left(p_{3}, p_{2}\right) & \left(p_{3}, p_{3}\right) & \left(p_{3}, p_{4}\right) & \ldots \\
\left(p_{4}, p_{1}\right) & \left(p_{4}, p_{2}\right) & \left(p_{4}, p_{3}\right) & \left(p_{4}, p_{4}\right) & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

Now the set of all of these ordered pairs is countable: order them according to this chart:

1	3	6	10	\ldots
2	5	9	14	\ldots
4	8	13	19	\ldots
7	12	18	25	\ldots
\vdots	\vdots	\vdots	\vdots	\ddots

2. If $A_{1}, A_{2}, A_{3}, \ldots$ are each countable, is their union?

Answer: Yes, for pretty much the same reason as in the first problem. Since each A_{j} is countable, you can list its elements:

$$
A_{j}=\left\{a_{1 j}, a_{2 j}, a_{3 j}, \ldots\right\}
$$

Now the union $\bigcup_{j=1}^{\infty} A_{j}$ consists of the elements in the following array (I've put the elements of A_{j} in the j th column):

$$
\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}
$$

Now cross out any repetitions, and count the remaining elements as in the first problem.
3. What is the smallest closed subset of \mathbf{R} which contains \mathbf{Q} ?

Answer: \mathbf{R} itself is the smallest closed subset which contains \mathbf{Q}. Suppose that A is a subset of \mathbf{R} which contains \mathbf{Q}; I claim that if $A \neq \mathbf{R}$, then A cannot be closed.

Since $A \neq \mathbf{R}$, then there is some point $x \in A^{c}$. For every $\varepsilon>0$, the ball $B_{\varepsilon}(x)$ must contain at least one rational number (in fact, it contains countably many rationals, but that's not important for this problem). Therefore, this ball does not lie completely inside of A^{c}, and therefore A^{c} is not open. By the definition of "closed," A is not closed.
So if A is any proper subset of \mathbf{R} which contains \mathbf{Q}, then A is not closed; hence \mathbf{R} is the only closed subset of \mathbf{R} which contains \mathbf{Q}.

