
Mathematics 468
Linear algebra primer

(I will use the words “point” and “vector” interchangeably to refer to elements of Rn.)
Definition. A vector subspace of Rn is a set V of points of Rn so that

• For all ~v1 and ~v2 in V , ~v1 + ~v2 is in V (“vector addition”), and

• For all ~v ∈ V and c ∈ R, c~v is in V (“scalar multiplication”).

These conditions imply that V contains the origin ~0, for example.
Examples. Any line through the origin is a vector subspace of Rn, as is any plane through the
origin, etc.
Theorem. V is a vector subspace of Rn if and only if there are vectors ~v1, . . . , ~vk in Rn so that

V = {c1~v1 + · · ·+ ck~vk | ci ∈ R}.

The sum c1~v1 + · · ·+ ck~vk is called a linear combination of the vectors ~v1, . . . , ~vk.
Examples.

• If ~v1 is any nonzero vector, then the set {c1~v1 | c1 ∈ R} is the set of all scalar multiples of
~v1: all points on the line in the ~v1 direction through the origin.

• If ~v1 and ~v2 are two vectors that don’t point in the same direction (i.e., if neither one is a
scalar multiple of the other), then the set {c1~v1 +c2~v2 | c1, c2 ∈ R} is the plane determined
by ~v1 and ~v2.

• If ~v1 = (1, 0, 0) and ~v2 = (0, 0, 1), then

{c1~v1 + c2~v2 | ci ∈ R} = {(c1, 0, c2) | ci ∈ R}

is the xz-plane.

Definition. If V = {c1~v1 + · · · + ck~vk}, then we say that V is spanned by the vectors ~v1, . . . ,
~vk. If V can be spanned by k vectors but not by fewer than k, then V has dimension k.
Examples. The dimension of a line is one. The dimension of a plane is two. The xz-plane in
R3 is spanned by the vectors

(1, 0, 0), (0, 0, 1), (1, 0, 2),

and also by the vectors
(1, 0, 0), (0, 0, 1).

It can’t be spanned by fewer than two vectors, so its dimension is two.
Definition. Let V be a vector subspace of Rn, of dimension k. A basis for V is any set of k
vectors which spans V . If {~v1, . . . , ~vk} is a basis for V , then every vector in V can be written
uniquely as a linear combination of the ~vi’s.
Examples. Consider the line in R2 through the origin with slope 2. It is one-dimensional, so
any single vector that spans it will form a basis. Here are several bases:

{(1, 2)}, {(2, 4)}, {(−1,−2)}, {(π, 2π)}.

For instance, every point on the line can be written in the form (tπ, 2tπ) for some number t.
Any two of the vectors (1, 0, 0), (0, 0, 1), (1, 0, 2) form a basis for the xz-plane.

Definition. Given two vector spaces V and W , a function f : V → W is linear if
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• f(~v1 + ~v2) = f(~v1) + f(~v2), and

• f(c~v1) = cf(~v1), for all vectors ~v1, ~v2 ∈ V and all scalars c ∈ R.

Example. If V = Rn and W = Rk, then a good example of a linear function is multiplication

by a k× n matrix A: if I write an element ~v of V as an n-dimensional column vector ~v =

a1

...
an

,

then A~v is a k-dimensional column vector. It is pretty easy to check that this defines a linear
function.
This example says that every matrix determines a linear function; to some extent, the converse
is true. Given vector spaces V and W with dim V = n and dim W = k, and given a linear
function f : V → W , then choosing bases for V and for W lets me find a matrix corresponding
to f . Choosing different bases will, in general, result in a different matrix. (This is why it’s best
to think of linear functions as linear functions, and not as determined by matrices.)
In detail: if {~v1, . . . ~vn} is a basis for V , then for each j, f(~vj) is a vector in W . If {~w1, . . . , ~wk}
is a basis for W , then f(~vj) can be expressed uniquely as a linear combination of the vectors ~wi:
write

f(~vj) = a1j ~w1 + · · ·+ akj ~wk.

Then the function f corresponds to the matrix A with (i, j)-entry aij . f sends the vector ~vj to
the “jth column of A”, and it sends a linear combination of the ~vj ’s to a linear combination of
the columns of A.
Example. Let V be the line of slope 2 through the origin in R2: all points of the form (t, 2t).
Let W be the real line. Define f : V → W by f(t, 2t) = t (take a point on the line V and send
it to the point on W with the same x-coordinate). If I want to write this as a matrix, I have to
choose bases for V and W . Depending on this choice, I’ll get a different matrix:

• Basis for V : {(1, 2)}. Basis for W : {1}. Then to find the matrix for f , I see where the
basis for V goes, and write this in terms of the basis for W : f(1, 2) = 1. So the matrix is
[1]. (The matrix in this case is 1× 1, so it’s just a number.)

• Basis for V : {(−1,−2)}. Basis for W : {1}. Then f(−1,−2) = −1 = −1(1). So the matrix
is [−1].

• Basis for V : {(2, 4)}. Basis for W : {1}. Then f(2, 4) = 2 = 2(1). So the matrix is [2].

• Basis for V : {(2, 4)}. Basis for W : {3}. Then f(2, 4) = 2 = 2
3 (3). So the matrix is [ 23 ].

These matrices all correspond to the same function, just parametrized differently. There is often
no “best” way to choose bases for V and W , so there is no canonical choice of a matrix to
represent a linear function. So, as I said earlier, it is best to think of linear functions as linear
functions, not as matrices.

Definition. Given a linear function f : V → W

• the null space of f , also known as the kernel of f , is the set {~v ∈ V | f(~v) = ~0}. This is a
vector subspace of V .

• The nullity of f is the dimension of the null space.

• The image of f is the set {~w ∈ W | ~w = f(~v) for some ~v ∈ V }. This is a vector subspace
of W .

• The rank of f is the dimension of the image.
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Theorem. Given a linear function f : V → W , rank(f) + nullity(f) = dim V .
Examples.

• If you define f : Rn → Rk as multiplication by some k × n matrix A, then the dimension
of V is the number of column of A. You can figure out the rank of A by row-reducing A
to get a matrix in row-echelon form; then the rank is the number of nonzero rows. The
nullity of A is the difference between these numbers.

• Define f : R2 → R by f(x, y) = 2x− y. Then the image of f is all of R: for every t ∈ R,
I can easily find x and y so that 2x− y = t (e.g., let x = t/2 and let t = 0). So the rank of
f is one, the dimension of its image, R. By the theorem, the nullity must be one. Indeed,
the null space of A is all points (x, y) with 2x − y = 0, or all points (x, y) with 2x = y.
This is the line through the origin with slope 2, a one-dimensional subspace of R2.

• If I use the “standard” bases for R2 and R—{(1, 0), (0, 1)} and {1}, respectively—then
the function f that I just defined is given by the matrix

[
2 −1

]
: f sends (1, 0) to 2 (the

first column of the matrix), and f sends (0, 1) to −1 (the second column). This is already
row-reduced, essentially, and has one nonzero row, so has rank 1.

Theorem. Suppose f : V → W is a linear function, with dim V = n and dim W = k.

(a) rank(f) is no larger than either n or k.

(b) f is one-to-one (also known as “injective”) ⇔ the kernel of f equals {~0} ⇔ the nullity of
f is zero.

(c) f is onto (also known as “surjective”) ⇔ the image of f equals W the rank of f is k.

(d) f is bijective ⇔ n = k = rank(f) ⇔ n = k and nullity(f) = 0.

If f is a bijection, then there is an inverse function g : W → V ; it turns out that if f is linear,
then so is g. In this case, f is called an isomorphism (of vector spaces). Two vector spaces V
and W are isomorphic if there is an isomorphism from one to the other.
Theorem. Two vector spaces V and W are isomorphic if and only if they have the same
dimension. If dim V = dim W = n, then f : V → W is an isomorphism ⇔ rank(f) = n ⇔
nullity(f) = 0.
Theorem. If dim V = dim W = n, then a linear function f from V to W can be represented by
an n× n matrix A. Then f is an isomorphism ⇔ the matrix A is invertible ⇔ det(A) 6= 0.
So if the dimensions of V and W are equal, you can tell whether a linear function is an isomor-
phism by computing a single number: the determinant of the matrix A.
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