Mathematics 468 Linear algebra primer

(I will use the words "point" and "vector" interchangeably to refer to elements of \mathbb{R}^n .) **Definition.** A vector subspace of \mathbb{R}^n is a set V of points of \mathbb{R}^n so that

- For all \vec{v}_1 and \vec{v}_2 in V , $\vec{v}_1 + \vec{v}_2$ is in V ("vector addition"), and
- For all $\vec{v} \in V$ and $c \in \mathbf{R}$, $c\vec{v}$ is in V ("scalar multiplication").

These conditions imply that V contains the origin $\vec{0}$, for example.

Examples. Any line through the origin is a vector subspace of \mathbb{R}^n , as is any plane through the origin, etc.

Theorem. V is a vector subspace of \mathbb{R}^n if and only if there are vectors $\vec{v}_1, \ldots, \vec{v}_k$ in \mathbb{R}^n so that

$$
V = \{c_1\vec{v}_1 + \cdots + c_k\vec{v}_k \mid c_i \in \mathbf{R}\}.
$$

The sum $c_1\vec{v}_1 + \cdots + c_k\vec{v}_k$ is called a linear combination of the vectors $\vec{v}_1, \ldots, \vec{v}_k$.

Examples.

- If \vec{v}_1 is any nonzero vector, then the set ${c_1\vec{v}_1 | c_1 \in \mathbf{R}}$ is the set of all scalar multiples of \vec{v}_1 : all points on the line in the \vec{v}_1 direction through the origin.
- If \vec{v}_1 and \vec{v}_2 are two vectors that don't point in the same direction (i.e., if neither one is a scalar multiple of the other), then the set ${c_1\vec{v}_1+c_2\vec{v}_2 | c_1, c_2 \in \mathbf{R}}$ is the plane determined by \vec{v}_1 and \vec{v}_2 .
- If $\vec{v}_1 = (1, 0, 0)$ and $\vec{v}_2 = (0, 0, 1)$, then

$$
\{c_1\vec{v}_1 + c_2\vec{v}_2 \mid c_i \in \mathbf{R}\} = \{(c_1, 0, c_2) \mid c_i \in \mathbf{R}\}\
$$

is the xz-plane.

Definition. If $V = \{c_1\vec{v}_1 + \cdots + c_k\vec{v}_k\}$, then we say that V is spanned by the vectors $\vec{v}_1, \ldots,$ \vec{v}_k . If V can be spanned by k vectors but not by fewer than k, then V has dimension k.

Examples. The dimension of a line is one. The dimension of a plane is two. The xz -plane in \mathbb{R}^3 is spanned by the vectors

$$
(1,0,0), (0,0,1), (1,0,2),
$$

and also by the vectors

$$
(1,0,0), (0,0,1).
$$

It can't be spanned by fewer than two vectors, so its dimension is two.

Definition. Let V be a vector subspace of \mathbb{R}^n , of dimension k. A basis for V is any set of k vectors which spans V. If $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is a basis for V, then every vector in V can be written uniquely as a linear combination of the \vec{v}_i 's.

Examples. Consider the line in \mathbb{R}^2 through the origin with slope 2. It is one-dimensional, so any single vector that spans it will form a basis. Here are several bases:

$$
\{(1,2)\}, \{(2,4)\}, \{(-1,-2)\}, \{(\pi,2\pi)\}.
$$

For instance, every point on the line can be written in the form $(t\pi, 2t\pi)$ for some number t. Any two of the vectors $(1, 0, 0), (0, 0, 1), (1, 0, 2)$ form a basis for the xz -plane.

Definition. Given two vector spaces V and W, a function $f: V \to W$ is linear if

- $f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$, and
- $f(c\vec{v}_1) = cf(\vec{v}_1)$, for all vectors $\vec{v}_1, \vec{v}_2 \in V$ and all scalars $c \in \mathbb{R}$.

Example. If $V = \mathbb{R}^n$ and $W = R^k$, then a good example of a linear function is multiplication \lceil a_1 1

by a $k \times n$ matrix A: if I write an element \vec{v} of V as an n-dimensional column vector $\vec{v} =$ $\overline{}$ $\overline{1}$. . .

then $A\vec{v}$ is a k-dimensional column vector. It is pretty easy to check that this defines a linear function.

 a_n

 \perp $\vert \cdot$

This example says that every matrix determines a linear function; to some extent, the converse is true. Given vector spaces V and W with dim $V = n$ and dim $W = k$, and given a linear function $f: V \to W$, then choosing bases for V and for W lets me find a matrix corresponding to f. Choosing different bases will, in general, result in a different matrix. (This is why it's best to think of linear functions as linear functions, and not as determined by matrices.)

In detail: if $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is a basis for V, then for each j, $f(\vec{v}_i)$ is a vector in W. If $\{\vec{w}_1, \ldots, \vec{w}_k\}$ is a basis for W, then $f(\vec{v}_j)$ can be expressed uniquely as a linear combination of the vectors \vec{w}_i : write

$$
f(\vec{v}_j) = a_{1j}\vec{w}_1 + \cdots + a_{kj}\vec{w}_k.
$$

Then the function f corresponds to the matrix A with (i, j) -entry a_{ij} . f sends the vector \vec{v}_i to the "jth column of A", and it sends a linear combination of the \vec{v}_i 's to a linear combination of the columns of A.

Example. Let V be the line of slope 2 through the origin in \mathbb{R}^2 : all points of the form $(t, 2t)$. Let W be the real line. Define $f: V \to W$ by $f(t, 2t) = t$ (take a point on the line V and send it to the point on W with the same x-coordinate). If I want to write this as a matrix, I have to choose bases for V and W . Depending on this choice, I'll get a different matrix:

- Basis for $V: \{(1,2)\}\)$. Basis for $W: \{1\}$. Then to find the matrix for f, I see where the basis for V goes, and write this in terms of the basis for $W: f(1, 2) = 1$. So the matrix is [1]. (The matrix in this case is 1×1 , so it's just a number.)
- Basis for V: $\{(-1, -2)\}$. Basis for W: $\{1\}$. Then $f(-1, -2) = -1 = -1(1)$. So the matrix is $[-1]$.
- Basis for $V: \{(2, 4)\}\)$. Basis for $W: \{1\}$. Then $f(2, 4) = 2 = 2(1)$. So the matrix is [2].
- Basis for $V: \{(2, 4)\}\$. Basis for $W: \{3\}$. Then $f(2, 4) = 2 = \frac{2}{3}(3)$. So the matrix is $\left[\frac{2}{3}\right]$.

These matrices all correspond to the same function, just parametrized differently. There is often no "best" way to choose bases for V and W , so there is no canonical choice of a matrix to represent a linear function. So, as I said earlier, it is best to think of linear functions as linear functions, not as matrices.

Definition. Given a linear function $f: V \to W$

- the null space of f, also known as the kernel of f, is the set ${\vec{v} \in V \mid f(\vec{v}) = \vec{0}}$. This is a vector subspace of V .
- The *nullity* of f is the dimension of the null space.
- The image of f is the set $\{\vec{w} \in W \mid \vec{w} = f(\vec{v})\}$ for some $\vec{v} \in V$. This is a vector subspace of W.
- The *rank* of f is the dimension of the image.

Theorem. Given a linear function $f: V \to W$, rank (f) + nullity (f) = dim V. Examples.

- If you define $f: \mathbf{R}^n \to \mathbf{R}^k$ as multiplication by some $k \times n$ matrix A, then the dimension of V is the number of column of A. You can figure out the rank of A by row-reducing A to get a matrix in row-echelon form; then the rank is the number of nonzero rows. The nullity of A is the difference between these numbers.
- Define $f: \mathbf{R}^2 \to \mathbf{R}$ by $f(x, y) = 2x y$. Then the image of f is all of \mathbf{R} : for every $t \in \mathbf{R}$, I can easily find x and y so that $2x - y = t$ (e.g., let $x = t/2$ and let $t = 0$). So the rank of f is one, the dimension of its image, \bf{R} . By the theorem, the nullity must be one. Indeed, the null space of A is all points (x, y) with $2x - y = 0$, or all points (x, y) with $2x = y$. This is the line through the origin with slope 2, a one-dimensional subspace of \mathbb{R}^2 .
- If I use the "standard" bases for \mathbb{R}^2 and \mathbb{R} —{(1,0),(0,1)} and {1}, respectively—then the function f that I just defined is given by the matrix $\begin{bmatrix} 2 & -1 \end{bmatrix}$: f sends $(1,0)$ to 2 (the first column of the matrix), and f sends $(0, 1)$ to -1 (the second column). This is already row-reduced, essentially, and has one nonzero row, so has rank 1.

Theorem. Suppose $f: V \to W$ is a linear function, with dim $V = n$ and dim $W = k$.

- (a) rank(f) is no larger than either n or k.
- (b) f is one-to-one (also known as "injective") \Leftrightarrow the kernel of f equals $\{\vec{0}\}\Leftrightarrow$ the nullity of f is zero.
- (c) f is onto (also known as "surjective") \Leftrightarrow the image of f equals W the rank of f is k.
- (d) f is bijective $\Leftrightarrow n = k = \text{rank}(f) \Leftrightarrow n = k$ and nullity $(f) = 0$.

If f is a bijection, then there is an inverse function $q: W \to V$; it turns out that if f is linear, then so is g. In this case, f is called an *isomorphism* (of vector spaces). Two vector spaces V and W are *isomorphic* if there is an isomorphism from one to the other.

Theorem. Two vector spaces V and W are isomorphic if and only if they have the same dimension. If dim $V = \dim W = n$, then $f : V \to W$ is an isomorphism \Leftrightarrow rank $(f) = n \Leftrightarrow$ nullity $(f) = 0$.

Theorem. If dim $V = \dim W = n$, then a linear function f from V to W can be represented by an $n \times n$ matrix A. Then f is an isomorphism \Leftrightarrow the matrix A is invertible \Leftrightarrow det(A) \neq 0.

So if the dimensions of V and W are equal, you can tell whether a linear function is an isomorphism by computing a single number: the determinant of the matrix A.