(Please print)

Last Name

First name

1. (6pt) If a circle is divided by two diametrical points b and b^{\prime} in two two (closed) semicircle D and D^{\prime}, show that any continuous map $f: D \rightarrow D^{\prime}$ carries a point to its antipode.
2. (6pt) Consider the union of two open tangent disks

$$
\left\{x^{2}+y^{2}<1\right\} \cup\left\{(x-1)^{2}+y^{2}<1\right\}
$$

Is the union of these disks a connected subset in \mathbb{R}^{2}. Is the union

$$
\left\{x^{2}+y^{2} \leq 1\right\} \cup\left\{(x-1)^{2}+y^{2}<1\right\}
$$

a connected subset of \mathbb{R}^{2} ?
3. (6pt) Compute the Euler characteristics of the six topological spaces depicted in Figure 1. You can use the computations we performed in class, $\chi($ circle $)=0, \chi$ (sphere $)=2$, $\chi($ torus $)=0$.

Figure 1: Six surfaces

