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The goal here is to flesh out the material in Flapan’s description of one of Kauffman’s
graph invariants. Let G be an abstract graph, a collection of vertices and edges. The
goal is to study embeddings of G in three space and in particular to produce invariants
to distinguish different embeddings. We are particularly interested in distinguishing an
embedding from its mirror image. The mirror image of an embedding h:G → R3 is just
the composition r ◦ h where r(x, y, z) = (x, y,−z) from R3 to itself.

Recall that we say that two embeddings h1, h2:G → R3 are equivalent provided that
there is an automorphism of the graph, θ:G → G such that the two embeddings h1 ◦ θ
and h2 are ambient isotopic: i.e. there is an isotopy of three space from the identity to H,
such that h1 ◦ θ is equal to H ◦ h2.

We typically represent h by a picture or regular projection which is a collection of
points and arcs in the plane. The points are the images of the vertices and are all distinct.
The arcs intersect the vertices only at their endpoints. Each arc is immersed and both the
self–crossings and the crossings with the other arcs are transverse. At each crossing we
indicate an over or an under crossing just as we did with knots and links. Here is a simple
example in which the arcs are actually embedded.

This a graph with two vertices and three edges, the so–
called θ–curve. Sometimes one wants to only consider graphs
with at most one edge between any two vertices. This graph
clearly lacks this property, but this lack is usually easily recti-
fied by adding a few additional vertices to divide the edges. An
algorithm to do this is to add one new vertex for each edge at
the middle of the edge. One can often get by with adding fewer
vertices, but an algorithm is sometimes useful. Here are four
pictures, the algorithm and three ways to achieve the property
by adding two vertices.

The algorithm is especially useful when issues of the automorphism group of the graph
are important since the automorphism group of the original graph is always a subgroup of
the automorphism group of the algorithmic graph, but not necessarily of the others.
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Next we show a non–planar embedding of G together with its mirror image.

G+ G-

We suspect that these two embeddings are different and also different from the first
embedding of G we showed above, but we need techniques to prove this. People have
defined polynomial invariants analogous to the HOMFLY polynomial we talked about
earlier, but Kauffman has an approach that allows us to use our link material directly.

We begin with the abstract graph G, and construct a set of subgraphs, mT (G). Before
beginning the construction proper, we pause to discuss an operation on graphs that we
will need shortly. Given a graph G, G is the subgraph obtained as follows. Delete all edges
incidence to a vertex of valence 1. This may produce new edges incident to a vertex of
valence 1 so repeat if necessary. Since the number of edges decreases as long as there are
edges incident to a vertex of valence 1, this process must stop when there are no longer
any vertices of valence 1. Then delete all the vertices of valence 0. It may very well be
that G = ∅, but if it is not, note that all the vertices of G are of valence ≥ 2.

The graph G has another description: it is the maximal subgraph of G all of whose
vertices have valence ≥ 2. To see this, note first that the union of two subgraphs of G, all
of whose vertices have valence ≥ 2, also has this property since valence can not decrease
in taking the union. This shows that there is a unique maximal subgraph of G with this
property and it contains every subgraph with the property. Temporarily, let H be the
maximal subgraph of G all of whose vertices have valence ≥ 2, or equivalently the union
of all the subgraphs with this property. Note G ⊂ H ⊂ G. Now we get from G to G
be a sequence of subgraphs, G0 = G, G1, . . . , Gr = G, where we pass from Gi to Gi+1

either by removing an edge with a vertex of valence 1 or by removing an isolated vertex.
If K ⊂ G is a subgraph with all vertices of valence ≥ 2, note that K ⊂ Gi for all i since
neither operation removes a vertex or an edge of K. Hence H ⊂ G and we are done. We
call this procedure taking the maximal high valence subgraph. We also call any subgraph
all of whose vertices have valence ≥ 2 a high valence subgraph. In the special case of a
subgraph all of whose vertices have valence precisely 2, we say the subgraph is a sublink.

Begin by numbering the vertices and let vertex i have valence vi. It will increase the
efficiency of our procedure if we number so that vi ≥ vi+1: i.e. smaller integers mean
larger valence. In any case, begin at the smallest vertex s whose valence is greater than
2. If there is no such vertex, our collection consists of the single element G, which is a
sublink.

Otherwise let e1 , . . . , ens denote the edges incident to vertex s in some order. There
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ways to pick two of the ei’s. Define a collection of subgraphs of G indexed by

ei, ej for i < j by first removing the open arcs which are the edges ek for k �= i and k �= j

to get G′
ei,1,ej,1

and then defining Gei,ej
= G′

ei,ej
. Notice that each Gei,ej

has at least one
fewer vertex of valence > 2 than G has.

Replace each Gei,ej
in the collection obtained by applying the above procedure to

each of the Gei,ej
and repeat until all the elements in the collection are sublinks. Denote

this final collection by m′(G). Let mT (G) be the collection of the maximal subgraphs in
m′(G). More explicitly, if K ∈ m′(G), then there is at least one element L ∈ mT (G) with
K ⊂ L, and if K and H ∈ m′(G) with K ⊂ H but H �= K, then K is not in mT (G).

We claim mT (G) is the collection of maximal sublinks. To see this, first note that any
element of m′(G) is a subgraph of at least one of the elements of mT (G). Next let H ⊂ G
be a sublink. We want to show H is a sublink of at least one element of mT (G). Suppose
by induction that H is a sublink of K, one of the elements obtained in an intermediate
stage of the construction. (It is certainly in G, the initial stage of the construction.) To
get the elements in the next stage coming from K, we pick a vertex of high valence; remove
edges incident to that vertex in all possible ways so as to have valence 2; and then taking
the maximal high valence subgraph of each subgraph. If that vertex is not in H, then none
of the deleted edges lie in H and since H is a high valence subgraph, it lies in the maximal
high valence subgraph: i.e. H is a sublink of all the graphs obtained. In the other case,
the vertex under consideration is in H. In this case there is a unique way to remove edges
so that the two edges of H incident to this vertex remain in the subgraph. It follows that
H is in this subgraph and hence in the maximal high valence subgraph associated to this
graph: i.e. H is in exactly one of the subgraphs obtained. Hence H is in at least one of
the subgraphs obtained at the end of the construction and therefore H is a sublink of at
least one element of mT (G).

Now let K ⊂ G be a maximal sublink. Then there exists H ∈ mT (G) with K ⊂ H.
But every element of mT (G) is a sublink so K = H. Conversely, if K ∈ mT (G), K must
be maximal, since if H is a sublink of G with K ⊂ H, then there is an element L ∈ mT (G)
with H ⊂ L, so K ⊂ L are both in mT (G) and therefore K = L.

In general, mT (G) is smaller than the collection considered by Kauffman (and hence
by Flapan). Consider the “dumbbell” graph:

1 2

Kauffman’s collection has three sub-
graphs: the two circles and the union of
the two circles. The collection you get by
applying our procedure before taking the
maximal ones, m′(G), has two elements:
the union of the two circles and the right
hand circle. The collection mT (G) has
one element: the disjoint union of the two
circles.

You can probably get Kauffman’s collection by calculating m′(G) for all the different
ways to number the vertices, although we shall not bother to investigate this. Actually
of course, we only need to number the vertices of valence > 2 to produce our collection
so this way of getting Kauffman’s collection is probably at least as efficient as Kauffman’s
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original procedure. However, we would argue that mT (G) is as good at detecting different
embeddings as the full collection considered by Kauffman.

To get an invariant of an embedding h:G → R3, apply h to each of the elements
in mT (G). This gives a collection of links in R3 labelled by the elements of mT (G). If
K ∈ mT (G), let LinkK,h ⊂ R3 denote the link obtained by applying h to the graph K ⊂ G.
Given a regular projection for h, it is easy to see a regular projection for LinkK,h: just
erase all the edges and vertices not in K. Let mT (G, h) denote the collection of labelled
links obtained and let mo

T (G, h) denote the collection of links with oriented components.
If two embeddings, h1 and h2, are ambient isotopic, LinkK,h1 and LinkK,h2 are ambient

isotopic links for each K ∈ mT (G). The need to consider automorphisms of the graph
causes a wrinkle. The set of automorphisms of the graph forms a group, Aut(G). Since
an automorphism permutes the vertices and the edges and only the identity fixes all the
edges and all the vertices, there is an injective homomorphism

Aut(G) ↪→ Σv × Σe

where Σv denotes the permutation group on the vertices and Σe denotes the permutation
group on the edges. If there is at most one edge between any two vetices, then the
composition Aut(G) ↪→ Σv × Σe → Σv is still an injection. For the complete graph on n
vertices, it is an isomorphism. For the θ–curve above, the map Aut(G) ↪→ Σv × Σe is an
isomorphism.

If there are no isolated vertices, we might hope that the composition Aut(G) ↪→
Σv × Σe → Σe is an injection, but the example of the θ–curve shows this is false. The
problem is that there are two essentially different ways to map an edge to an edge. For an
isolated edge, this problem is insuperable without knowledge of which vertex goes where,
and even if we glue several edges together at a pair of vertices (like the θ–curve) we will need
vertex information. But, if the graph has no isolated vertices or isolated edges and if there
is at most one edge between any two vetices, then the composition Aut(G) ↪→ Σv×Σe → Σe

is injective.
An automorphism θ of the graph induces a permutation of elements of mT (G), say

K goes to θ[K] and an explicit isomorphism of graphs, θK :K → θ[K]. You need to
check three things. The first is that an automorphism of a graph takes any subgraph to a
(possibly different) subgraph. The second is that an automorphism preserves valence: if v
has valence n, then θ(v) must also have valence n. It follows that an automorphism takes
subgraphs of high valence to subgraphs of high valence and sublinks to sublinks. The third
thing to check is that if K1 ⊂ K2, then θ(K1) ⊂ θ(K2), so that an automorphism takes
maximal sublinks to maximal sublinks.

Hence if h1 and h2 ◦ θ are ambient isotopic, the links LinkK,,h1 and Linkθ[K],h2 are
equivalent and these are the links which are easy to see from the pictures for h1 and h2.
The function K 
→ θK gives a homomorphism

Ψ: Aut(G) → ΣmT (G)

where Aut(G) denote the automorphism group of G and ΣmT (G) denotes the permutation
group on the elements of mT (G).
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One would now like to apply our previous techniques for links to these particular links.
Unfortunately, most of our earlier work applies to oriented links. As an example, the left
and right Hopf links are different as oriented links but the same as unoriented ones. We
say this by observing that the two HOMFLY polynomials are different. Since the mirror
image of the right Hopf link is the left Hopf link, this will be an annoyance in studying
chirality questions.

As Flapan remarks, sometimes the chemistry orients the sublinks for you. A gener-
alization of this remark is that sometimes the chemistry of the compound restricts the
automorphisms. If some of the vertices are carbon and others are silicon, then no chemi-
cally realizable automorphism can exchange a silicon vertex with a carbon vertex. Hence
in our study of equivalent embedded graphs, we can insist that only chemically realizable
automorphisms are permitted.

Anyway, even abstractly we can proceed as follows. Each element in mT (G) is a link.
Label the components and remember that each component has two possible orientations.
Let mo

T (G) denote the collection consisting of the elements of mT (G) labeled and oriented
in all possible ways. Given an embedding h:G → R3, let mo

T (G, h) denote the labelled
collection of oriented links obtained by applying h to each element in mo

T (G). Given two
ambient isotopic embeddings of G, the associated links are ambient isotopic as oriented
links, so mo

T (G, h) really only depends on the ambient isotopy class of h.
Passing from mT (G) to mo

T (G) greatly increases the number of elements in the col-
lection. Even if all the elements of mT (G) are knots, mo

T (G) has twice as many elements.
Each k component link turns into 2k · k! objects. Its virtue is that it remains canonical.
Given an automorphism of the graph, we get an automorphism of mT (G) and since we
have an explicit isomorphism K → θ[K], θ induces an automorphism of mo

T (G) as well.
We can describe the map induced on mo

T (G) as follows. Send K with an orientation and
label to θ[K] with the unique orientations and labels so that the map K → θ[K] preserves
labels and the orientation on each component. Once you know the effect of θ on one K
with labels and orientations, calculating θ on the other labels and orientations of K is easy.
You have already calculated which component of K goes to which component of θ[K] and
when you switch an orientation on a component of K, switch the orientation on the cor-
responding component of θ[K]. There is a function mo

T (G) → mT (G) which comes from
forgetting the orientations. Let Aut

(
mo

T (G) → mT (G)
)

denote the automorphisms of the
set mo

T (G) which induce automorphisms of mT (G). Check that there is a homomorphism

Ψo: Aut(G) → Aut
(
mo

T (G) → mT (G)
)

To give one of our subinks, it suffices to give its edges. To orient a sublink it suffices to
orient its components. Suppose the vertices and the edges are ordered. There is usually no
natural way to do this so just do it. Each component of a sublink is a circle, so the order of
the edges in it is fixed once a starting edge and an orientation are chosen. The elements of
mo

T (G) can be given as ordered lists of edges, where each component begins with an edge
incident to the “smallest” vertex in the component and is oriented so that we travel from
this vertex along the initial edge. Each component has a “preferred” orientation given by
going in the direction of the smallest edge out of the smallest vertex. The “preferred” is
in quotes since it depends on the chosen order: it is not canonical. We can also label the
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components by ordering them, so we may speak of the first, second and so on. Since no
two components of a sublink can share an edge, we can label the components of a sublink
by just giving the smallest edge in the component.

So elements of mT (G) are just sets of edges while elements of mo
T (G) are ordered

tuples of elements with an ordering on the subtuples that make up the components of the
sublink. There is a “preferred” representative of each element in mT (G) up in mo

T (G)
given by taking the “preferred” orientation on each component and the lexicographical
ordering on the components. If there is at most one edge between two vertices, then just
listing the edges in the order they occur around the circle beginning with the smallest will
orient the circle by just starting at the vertex of the first edge which is not incident to the
second. There is a “preferred” orientation in this scheme as well.

If the elements of mo
T (G), or mT (G), are written like this, the effect of θ can be

worked out from the permutation induced on the edges and vertices. A more compact way
to describe mo

T (G) is as triples. The first element in each triple is a “preferred” element.
If this sublink has k components, the second element in the triple is a tuple of length k,
(±, · · · ,±) (the orientation tuple), and the third element in the triple is an element of the
symmetric group on k elements, τ . This triple represents an element in mo

T (G) by first
orienting the components using the ±–tuple: if the ith entry is a +, use the orientation on
the ith component coming from the “preferred” orientation: otherwise, use the opposite
orientation. Then permute the components using the permutation from their “preferred”
order. Hence to describe how θ acts on mo

T (G) it is enough to apply θ to the “preferred”
elements in mo

T (G) and just give the new orientation tuple and permutation, so in practice
on ends up working with lists the size of mT (G).

Let us see how this technique works in practice on the θ–curve, where the numbers
order the nearby vertices and the lower case letters order the edges. Here we are NOT in
the case of at most one edge between two vertices.

1 2

a

b

c

Look at vertex 1 and remove one edge. If we remove a, we get the graph {b, c}; if we
remove b, we get the graph {a, c}; if we remove c, we get the graph {a, b}. Each of these is
already a sublink so we are done. The set mo

T (G) is
{
(b, c), (c, b), (a, c), (c, a), (a, b), (b, a)

}
.

The ordered set (b, c) means the circle and orientation starting at vertex 1, going out along
b to vertex 2 and then coming back along c. Note that (c, b), starting at 1, going out along
c and coming back along b, gives the same circle but with the opposite orientation. Since
each sublink has a single component it is just as efficient to list all the elements in mo

T (G)
as to use the more compact notation, but for completeness, it would be written{(

(b,c),(+),id
)
,
(
(b,c),(−),id

)
,
(
(a,c),(+),id

)
,
(
(a,c),(−),id

)
,
(
(a,b),(+),id

)
,
(
(a,b),(−),id

)}
.
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The “preferred” representatives are (b, c), (a, c) and (a, b).
The group of automorphisms of θ was worked out above. There is an automorphism

which takes each edge to itself but permutes the two vertices. The symmetric group
on three letters permutes the edges and leaves the vertices fixed. The permutation that
switches the vertices commutes with all the permutations that swap the edges. In other
words, the natural map Aut(G) → Σv × Σe is an isomorphism.

Permuting the two vertices takes each element of mT (G) to itself, although it reverses
the orientation on each knot: i.e. it switches (b, c) and (c, b) and has a similar effect on the
other two pairs. A permutation (automorphism) of the edges acts on mo

T (G) by apply the
permutation to the edges in the ordered pairs. As an example, the permutation τ which
takes a to b, b to c and c to a takes (a, b) to (b, c), (b, c) to (c, a), etc. The homomorphism
Ψ0 above is an isomorphism for this graph.

Now recall our other embeddings

G+ G-

The set of labeled links (in this case knots) for G+ is

{a,b} {b,c} {a,c}

Note {a, c} and {b, c} are unknotted and {b, c} is a right handed trefoil. It follows that
G+ is not equivalent to our first embedding of the θ–curve. If we consider G− instead, we
get a left handed trefoil for {b, c} so the embedding and unknots for the other two. Hence
G− is yet a third embedding.

We can also use mo
T (G) to restrict which automorphisms of the graph can be realized

by ambient isotopies of R3. In other words, mo
T (G) gives information on the question for

which θ is h ambient isotopic to h ◦ θ?
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This subset is actually a subgroup of Aut(G) which we will denote Auth(G) even
though it only depends on the ambient isotopy class of h. To see this, recall that if h is
ambient isotopic to h ◦ θ then there is an isotopy of three space Hθ such that Hθ(z, 0) = z
and Hθ

(
h(x), 1

)
= h ◦ θ(x). If θ1 and θ2 are in Auth(G), there are isotopies Hθi as above.

Consider Hθ1

(
h(x), 1

)
= h ◦ θ1(x) and substitute θ2(x) for x to get Hθ1

(
h(θ2(x)), 1

)
=

h◦ θ1(θ2(x)), which says Hθ1

(
h(θ2(x)), 1

)
= h◦ (θ1 ◦ θ2)(x)). But Hθ2

(
h(x), 1

)
= h◦ θ2(x),

so Hθ1

(
h(θ2(x)), 1

)
= Hθ1

(
Hθ2

(
h(x), 1

)
, 1

)
= h ◦ (θ1 ◦ θ2)(x)). Define Hθ1◦θ2(x, t) =

Hθ1(Hθ2(x, t), t), so Hθ1◦θ2

(
h(x), 1

)
= h ◦ (θ1 ◦ θ2)(x). Check that Hθ1◦θ2(z, 0) = z and

notice that for a fixed t Hθ1◦θ2(z, t) is the composition of the diffeomorphisms Hθ1(z, t) and
Hθ2(z, t). This shows θ1 ◦θ2 ∈ Auth(G). Check that the identity isotopy gives the required
equation for the identity automorphism of the graph. Finally check that the isotopy H−1

θ

gives the required equation for the automorphism θ−1. We have checked Auth(G) is a
subgroup.

The same ideas show that for any θ ∈ Aut(G)

Auth◦θ(G) = θ−1Auth(G)θ

as subgroups of Aut(G). This follows from the observation that if h and h◦θ1 are ambient
isotopic, so are h◦θ and h◦ (θ1 ◦θ) for all θ ∈ Aut(G). Hence h◦θ and (h◦θ)◦ (θ−1 ◦θ1 ◦θ)
are ambient isotopic, so Auth◦θ(G) ⊃ θ−1Auth(G)θ. But Auth(H) = θ ◦

(
θ−1Auth(G)θ

)
◦

θ−1 ⊂ θ ◦
(
Auth◦θ(G)

)
◦ θ−1 ⊂ Auth◦θ◦θ−1(G) = Auth(G) so the inclusion is an equality.

The mirror image of h is the embedding r ◦ h:G → R3 → R3 where r:R3 → R3 is
r(x, y, z) = (x, y,−z). We show

Auth(G) = Autr◦h(G) .

Suppose θ ∈ Auth(G), or Hθ

(
h(x), 1

)
= h◦θ(x). Then r◦Hθ

(
h(x), 1

)
= (r◦h)◦θ(x). Define

Ĥθ(z, t) = r ◦ Hθ(r(z), t) and note Ĥθ(z, 0) = z. Check Ĥθ

(
(r ◦ h)(x), 1

)
= (r ◦ h) ◦ θ(x),

so θ ∈ Autr◦h(G), showing Auth(G) ⊂ Autr◦h(G). Since r ◦ r is the identity, this proves
the desired equality.

Next suppose h is achiral, and let θ− be any automorphism such that (r◦h) is ambient
isotopic to h ◦ θ−. In other words, there is an ambient isotopy of three space H so that
H

(
r ◦h(x), t

)
= (h ◦ θ−)(x). Hence for any θ ∈ Aut(G), H

(
r ◦h(θ(x)), t

)
= (h ◦ θ−)(θ(x)),

or H
(
r ◦ (h ◦ θ)(x)), t

)
= (h ◦ (θ− ◦ θ))(x).

First note that this implies that if h is achiral, so is h ◦ θ for any θ ∈ Aut(G) and an
automorphism which displays the achirality is θ−1 ◦ θ− ◦ θ.

Let θ′− be any automorphism such that h◦θ′− is ambient isotopic to r◦h: θ′− = θ− is one
possibility, but there may be others. Let H ′ be the promised ambient isotopy. With θ = θ′−,
we get H

(
r◦(h◦θ′−)(x)), t

)
= h◦(θ− ◦θ′−)(x), or H

(
r◦H ′(r◦h(x), t

)
, t

)
= h◦(θ− ◦θ′−)(x).

Define K(z, t) = H
(
r ◦ H ′(r(z), t

)
, t

)
so K

(
h(x), t

)
= h ◦ (θ− ◦ θ′−)(x). For t = 0, K

is the identity and for a fixed t, K is the composition of H(r( ), t) with H ′(r( ), t).
Since H(r( ), t) and H ′(r( ), t) are diffeomorphisms for each fixed t, so is K. Hence
θ− ◦ θ′− ∈ Auth(G). It follows that the set of θ such that h ◦ θ is ambient isotopic to h or
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r ◦ h is also a subgroup, Aut±h (G), and Auth(G) ⊂ Aut±h (G) is a subgroup of index 1 or 2.
It is entirely possible that θ− itself is in Auth(G), as for example when h is planar when
we may take θ− to be the identity. In other words, it is possible that Auth(G) = Aut±h (G).

Theorem 1: Let h be achiral. The groups Auth(G) and Aut±h (G) are equal if and only
if h and its mirror image are ambient isotopic. If mo

T (G, h) contains a chiral element then
Aut±h (G)/Auth(G) = Z/2Z.
Remark: If G is chiral, it is immediate that Auth(G) = Aut±h (G).
Proof : If h and its mirror image are ambient isotopic, then θ− can be taken to be the
identity and the two subgroups are equal. If the two subgroups are equal and if h is achiral,
there is an automorphism, θ− displaying the achirality: i.e. r ◦ h is ambient isotopic to
h ◦ θ−. But since θ− ∈ Auth(G), h ◦ θ− is ambient isotopic to h. This proves the first part.
If mo

T (G, h) contains a chiral element, then r ◦ h and h are not ambient isotopic. Since we
are assuming h is achiral the two subgroups can not be equal.

As Flapan points out later in the book, we have a way to construct new embeddings of
G as soon as we have one embedding h for which Auth(G) �= Aut(G). If θ is a representative
for a left coset Auth(G)

∖
Aut(G) which is not the coset of the identity, then h ◦ θ is not

ambient isotopic to h. More generally,

Theorem 2: Given two automorphisms θ1 and θ2, h ◦ θ1 is ambient isotopic to h ◦ θ2 if
and only if θ1 and θ2 lie in the same coset of Auth(G)\Aut(G).
Proof : If h ◦ θ1 is ambient isotopic to h ◦ θ2 then h = h ◦ θ1 ◦ θ−1

1 is ambient isotopic to
h ◦ θ2 ◦ θ−1

1 , so θ2 ◦ θ−1
1 ∈ Auth(G), so θ1 and θ2 are in the same coset of Auth(G)\Aut(G).

Conversely, if θ2 = θ ◦ θ1 for some θ ∈ Auth(G), then h ◦ θ2 = h ◦ θ ◦ θ1 is ambient isotopic
to h ◦ θ1.

Remark: This coset space is what Flapan calls the set of topological sterioisomers (page
155). It is worth recalling that any diffeomorphism (or homeomorphism) that preserves
orientation is ambient isotopic to the identity.

For our first embedding of the θ–curve, all automorphisms can be realized by ambient
isotopies. For the embeddings G±, our techniques say nothing about the automorphism
which just switches the vertices, and indeed, these automorphisms can be realized. If the
vertices are fixed, then the only permutation of the edges which might be realizable is the
permutation which switches a with b and leaves c fixed. The easiest proof I know that this
permutation is realizable is to tie the embedded graph out of string and put it on the table
so as to represent both pictures. Note this really is a proof, not just highly suggestive.

By tying lots of knots in the edges of G we can produce embeddings h for which
Auth(G) is very small. If there is at most one edge between any two vertices, then by
tying a different knot in each edge, we can make Auth(G) the trivial group. Hence there
are no non–trivial “universal” automorphisms of a such graph. There are as we shall see
later (Flapan p. 158) some elements θ ∈ Aut(G) which are in no Auth(G). Let N (G)
be this set. Note N (G) is closed under conjugation: if θ ∈ N (G) and ν ∈ Aut(G), then
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ν ◦ θ ◦ ν−1 ∈ N (G). Additionally, if x ∈ Aut(G) satisfies xn ∈ N (G), then x ∈ N (G). A
corollary of this is that if x ∈ N (G), xr ∈ N (G) for all r relatively prime to the order of
x. Thus if N (G) �= ∅, it tends to contain quite a bit.

Next we work out an example for which there is a multi–component link. It is the
example from class. See Figure 1 below.

The top line is the graph and the next four lines are the elements of mT (G). The ±
inside each square explains the orientation. All the sublinks are planar as drawn and any
circle in the plane can be oriented by travelling so that the inside is on your left. The sign
is + if this orientation and the “preferred” one agree, the sign is − if they do not. The
elements of mT (G) will be referred to by the capital letter on their line. Hence the unique
2 component sublink in mT (G) will be called sublink D). For now ignore the dotted axes
in the picture of the graph.

There are four vertices of valence 3 and four of valence 2. The four of valence 4 span
a square. One maximal sublink has 4 vertices, two have 6 and one has 8.

Automorphisms (of practically anything) can be confusing at first. We know ab-
stractly that for a graph with at most one edge between two vertices (such as this one) an
automorphism is determined by its action on the vertices. Or if we prefer, on a graph with
no isolated vertices, isolated edges and with at most one edge between two vertices (such
as this one), an automorphism is determined by its action on the edges. The issue is that
not all permutations of the edges actually give automorphisms of the graph. To check if a
particular permutation does give an automorphism, try to relabel the graph using the new
edges and see that no contradictions of the vertex relations occur. (Vertex relations mean
things like a and d share a vertex but a and c do not and that both vertices of a have
valence 2.) Hence vertex relations will only permit c 
→ c or c 
→ g and similarly for g. For
valence reasons, c can only be mapped to itself or g or k or l. Suppose it were possible to
map c to k. Then k would have to go to c or to g. Suppose k goes c. Then d would have
to map to itself and then a would have to map to itself and finally b would have to map to
itself. But then k and b would have to share a common vertex and they don’t. Similarly,
k can not map to g. A similar argument shows c can not map to l. If c 
→ c, then vertex
relations also force k 
→ k or k 
→ l and similarly for l, since k can not map to b or d since
both b and d are incident to a vertex of valence 2 and k is not. If c 
→ c and k 
→ k then
the automorphism is the identity.

We can also use the induced action on the elements of mT (G) or mo
T (G) to help

determine the automorphism group. In our case, C) is the only element of mT (G) with 4
vertices so it must be invariant and we get a homomorphism Aut(G) → D8, where D8 is
the dihedral group of order 8 or, more relevantly, the symmetry group of the square. The
valence relation example in the last paragraph implies that Aut(G) is a subgroup of D8.
The valence relation example also shows that the 90◦ rotation of the square in D8 is not
in the image of Aut(G). Both reflections and the 180◦ rotation of the square do extend to
automorphisms of the entire graph, so Aut(G) = Z/2Z ⊕ Z/2Z ⊂ D8. Using the dotted
lines as a set of axes, we can describe the four elements in Aut(G) as e, the identity; rx,
reflection in the x–axis, ry, reflection in the y–axis; and R180, rotation about the origin
through 180◦ degrees. Each of the non–identity elements has order 2; all the elements
commute with each other and rx ◦ ry = R180.
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Figure 1

Let us work out how these automorphism act on the 2 component link D) in mo
T (G).
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Rotation by 180◦ interchanges the two components as does ry; rx takes each component
to itself. As for orientations, we compute

rx takes each component to itself and reverses orientation in each of them;
ry interchanges the components but preserves both orientations;
R180 interchanges the components and reverses both orientations.

Now look at a different embedding of G side by side with the mirror image of that
embedding.

k

l

a b

d c g

fe

h

k

l

a b

d c g

fe

h

Are these two embeddings equivalent? Or equivalently, are each of these embeddings
chiral? If we let h denote the embedding on the left in the picture, then we are inquiring
whether h and r ◦ h are equivalent, or whether there is an automorphism θ such that h ◦ θ
and r ◦ h are ambient isotopic.

Since every sublink will have a regular projection with at most two crossing, all the
subknots in mo

T (G) are unknots. However, sublink D) is a labelled, oriented Hopf link.
On the left, the linking number of the two components is +2, on the right −2. Recall that
the linking number is unchanged if we switch the order of the components or if we reverse
both orientations. Hence the linking number of D) after applying h ◦ θ for any θ ∈ Aut(G)
remains +1. Hence these embeddings are chiral.

Here is a different projection of the embedding h.

k

l

gc ae

b

d

f

h

Figure 2

From this projection it is easy to see lots of symmetry. Consider the following two
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step construction.

k

l

gc ae

b

d

f

h

k

l

gc ae

b

d

f

h

First draw the left hand picture in the xy–plane. The x–axis is horizontal and the
y–axis is vertical: the positive z–axis points straight up from the page. The two gray dots
labelled a and e are temporary to help in step 2: in particular, they are not vertices. Draw
the picture so that rotation by 180◦ degrees about any of the three axes is a symmetry. As
an aside, note that the full symmetry group of the square almost acts on this picture. If it
were not for those pesky gray dots rotation by 90◦ around the z–axis would be a symmetry
as well.

Anyway, now add the yellow and purple arcs between the indicated vertices and the
gray dots. Make the yellow arcs lie in the upper z half space except at their end points.
Add the purple arcs similarly except make them go down. If you do this carefully, rotation
about the three axes remain symmetries of the embedding. Now just erase the gray dots
and change the colored arcs to black to get the projection of h in Figure 2.

With these preliminaries, rotation about the three axes induce automorphisms of the
graph. Specifically, rotation about the z axis is R180; rotation about the y–axis is rx; and
rotation about the x–axis is ry. In particular, Auth(G) = Aut(G).

This gives another proof of the chirality of h by using Theorem 1. The oriented Hopf
link is chiral and occurs in mo

T (G, h). By Theorem 1, if h is chiral, Aut±h (G)/Auth(G) =
Z/2Z. But since Aut±h (G) ⊂ Aut(G), Aut±h (G) = Auth(G).
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Homework:
1) Apply the procedure describe above to the graph G below to calculate mT (G).

Use the ordering of the vertices and edges given. Describe the sublinks you get
by just listing the edges in each sublink.

1

2

3

a

b

c

d

e

2) Consider the embedding of G given here.

a) Draw the mirror image of this embedding, and show this embedding is achi-
ral.

b) Draw the set of labelled links, LinkK,h for K ∈ mT (G), where h is the
embedding shown. Show that several of these are chiral. How can this be
reconciled with a)?

3) What is the maximal high valence subgraph of the graph below? Argue that the
embedding of G given below is chiral.
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