
The goal of these notes is to describe some results in knot theory. Recall that a knot
is a smooth embedding e:S1 → R3. One rarely writes an explicit formula for e, preferring
instead to draw a regular projection, defined below. A projection for R3 is any linear map
p:R3 → R2 which is onto, or equivalently has a 1–dimensional kernel. The projection for
the knot is the composition p ◦ e.

The knot projection is an immersion provided the differentiable of p ◦ e is non–zero
at each point in S1. To actually do calculations, think of e as a function R1 → R3 which
is periodic and then we can use multi–variable calculus as in 225. The differential of e
at a point x ∈ S1 is a linear map dex:R1 → R3 which is 1 to 1 since e is an embedding
(local embedding will suffice for this result). Since the kernel of p is 1 dimensional, usually
d(p ◦ e)x, which is a linear map from R1 to R2, has a 0 dimensional kernel.

Any immersion f :S1 → R2 is locally 1 to 1. This is a corollary of the Implicit Function
Theorem, but can be proved in this case as follows. Pick any point x ∈ S1. Then the
differential of p ◦ e evaluated at x is a non–zero vector in R2, say (a, b). Let q:R2 → R1

be the projection q(x, y) = ax + by. The composition q ◦ p ◦ e is a map S1 → R1 with
derivative at x equal to a2 + b2 �= 0. By the Inverse Function Theorem, the composite is
1 to 1 in a small neighborhood of x and hence so must be p ◦ e. Since p ◦ e is locally 1 to
1 and since S1 is compact, the inverse image of any point in R2 is a finite set. A point in
R2 whose inverse image consists of 1 point is called a regular point; a point whose inverse
image consists of 2 points is called a double point. A double point is called isolated if
there exists a neighborhood in which all the other points are regular. An isolated double
point is called transverse provided the two tangent vectors at the double point are linearly
independent, which in this case means not parallel. A regular immersion is an immersion
which has only transverse double points and regular points.

Here is an example: the function e(t) = (3 cos 3t, 3 sin 2t, sin t) is a smooth function
from R1 to R3 which is periodic with period 2π and so is a function S1 → R3. We
let the projection p:R3 → R2 be the linear function p(x, y, z) = (x, y). The graph of
p ◦ e(t) = (3 cos 3t, 3 sin 2t), which is an example of a Lissajous figure, is
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which looks like a regular immersion. It actually will be a
regular immersion provided that it is an immersion and that
the only intersection are the evident transverse ones.

The differential of p◦e is (−9 sin 3t, 3 cos 2t) and this vector
is never 0, so p ◦ e is an immersion.

To calculate the intersection points we need to find all
solutions to the equations (3 cos 3t, 3 sin 2t) = (3 cos 3s, 3 sin 2s)
with 0 ≤ t �= s < 2π. With no help, this can be tricky, but we
can use the graph and the derivative. There are apparently

6 points where a particle moving along our curve changes direction with respect to its
motion along the x–axis. From 0 to π

3 , sin 3t ≥ 0 so −9 sin 3t ≤ 0 so the particle moves to
the left. Since −9 sin 3t is only 0 at the end points, the motion is uniform. From π

3 to 2π
3

−9 sin 3t ≥ 0 so the particle moves steadily to the right. Continuing in this way we see the
particle travels the curve as indicated by the next graph. Each colored arc is an embedding
because the particle never reverse direction along the x–axis on an arc of a fixed color.
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The intersection points can now be worked out.
1) ( 3

√
2

2 , 3
2 ): t = π

12 on the yellow curve; t = 17π
12 on

the green curve.
2) (0, 3

√
3

2 ): t = π
6 on the yellow curve; t = 7π

6 on the
black curve.

3) (− 3
√

2
2 , 3

2 ): t = 5π
12 on the red curve; t = 13π

12 on the
black curve.

4) (0, 0): t = π
2 on the red curve; t = 3π

2 on the green
curve.

5) (− 3
√

2
2 ,− 3

2 ): t = 7π
12 on the red curve; t = 23π

12 on
the purple curve.

6) (0,− 3
√

3
2 ): t = 11π

6 on the purple curve; t = 5π
6 on

the blue curve.
7) (− 3

√
2

2 ,− 3
2 ): t = 19π

12 on the blue curve; t = 11π
12 on

the green curve.
The solutions were found by eye–balling the intersections and then verifying the needed
equalities. One can prove that these are the only intersections and that the intersections
are transverse, although this is clear from the graph. Since the z–coordinate of e is sin t,
the z–coordinate is positive between 0 and π and negative between π and 2π. It is easy to
see that e is an embedding, so e is a knot and this is a regular projection of it.

It is however an uninteresting knot since it is unknotted. Why?
A more interesting function is e(t) = (3 cos 3t, 3 sin 2t, sin 3t). It has the same projec-

tion as our first example since the first two coordinates are the same. Hence the colored
arcs alternate coming out of the plane at you (positive z–coordinate) and going into the
plane (negative z–coordinate). This shows that the only possible intersections are the four
points in the interiors of the quadrants ( 1, 3, 5 and 7 above). Unfortunately, the e has
intersections at these values of t even in R3, so e is not an embedding.

Consider e(t) = (3 cos 3t, 3 sin 2t, 4 sin2 t sin 3t + 12 sin257 t). The xy–projection is still
the same, so the only intersections this e could have are at the intersections of the pro-
jection. One can verify that here there are no intersections. We get a knot for which the
xy–projection is regular:
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Note that this knot is alternating, (which means
that the crossings alternates between over and un-
der). It is a fact that an alternating knot (or link)
with more than one crossing is non–trivial.

A knot is an embedding e:S1 → R3 and so will
have some parameterization. We can think of the pa-
rameterization as a particle moving along the curve
by the formula e(t). The parameterization gives an
orientation for the knot since an orientation is just a
direction to travel around the knot. Since the deriva-
tive of the embedding is always non–zero, a particle
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moving along the knot never stops and hence never reverses direction.

Since p ◦ e is an immersion for a regular projection of the knot, we also see that
the parameterization of the projection determines an orientation. In practice, we draw a
regular projection with no formulas for the knot (or link or even an embedded graph). To
orient a knot, we just draw an arrow on the regular projection. For the example above we
have the two pictures:
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In a regular knot, the double points are isolated, so we can isolate each intersection.
That is we can find a small disc centered at the double point and within that disk all we
see is two stands of the knot with one crossing. An orientation on a knot allows us to
assign a handedness to the double point.

If the crossing looks like we call it a right hand crossing.

A precise description of a right hand crossing follows. Place your right hand with fingers
straight along the over crossing with your fingers pointing in the direction of the orientation
arrow and with your thumb pointing up. When you curl your fingers in the natural
direction to lie along the under crossing, your fingers should point in the direction of the
arrow on the under crossing. A left hand crossing looks like .
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In the example above, we can orient the knot and then check that all the crossings
are left handed ones.
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Reversing the orientation does not change the type of the crossing, a point which is easily
checked in this example. Reversing a crossing does change the type of a crossing from right
to left and vice versa.

We can associated an integer invariant, called the writhe, to a regular projection.
The writhe is just the number of right handed crossing minus the number of left handed
crossing. In our example, the writhe is −7.

Reidemeister Moves.

One can give algorithms for associating numbers or groups to regular projections, but
we want to get invariants of the knot, not just the regular projection.

Reidemeister solved this problem in the 1920’s by proving that one can get from one
regular projection of a knot to another regular projection for the same knot by a sequence
of three kinds of moves, now called the Reidemeister moves.

First are the type I Reidemeister moves:

The meaning of the illustration is that we are looking at a piece of the knot projection
where we see either the strand on the left (the one with the kink) or the one on the right
(the straight line). Whichever picture we see, we can get a new picture by replacing the
one we see by the other. There is a second type I Reidemeister move: the picture is the
same except that the kink has the other crossing. In neither case is it necessary that the
picture be vertical as shown. Type I Reidemeister moves just say that you may add a kink
any where you like as long as it doesn’t interfere with the other parts of the picture. You
may also remove a kink anytime you see one.
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Type II Reidemeister moves are illustrated by the following picture.

Type II Reidemeister moves allow you to replace a pair of strands which do not cross
by a picture with two double points. They also allow you to remove a pair of double points
provided the crossing strand is either above the other or below it. The illustration has the
bent strand on top, but there is another type II move where it is on the bottom.

Type III Reidemeister moves are illustrated by the following picture.

Here the vertical strand behind a crossing is passed to the other side of the crossing,
all the while staying behind the two crossing strands. There are three other pictures: the
strand stays in front; the crossing is changed and the strand is behind; the crossing is
changed and the strand stays in front.

One is rarely interested in actually producing the sequence of Reidemeister moves to
get from one regular projection to another, but it is a very useful result for producing
invariants. One need only check that your invariant doesn’t change under the three types
of moves.

There is no issue of orientations here. Suppose given two regular projections of the
same oriented knot. Both regular projections are oriented. Construct a sequence of Rei-
demeister moves between the two projections. Note that there is no doubt as to how to
orient each stage of this sequence and that these orientations are the ones induced from
the fixed orientation of the knot.

It is a worthwhile exercise to check that the writhe is invariant under type II and
type III Reidemeister moves, but it is changed by a type I move. Hence the writhe is not
an invariant of the knot. Moreover, given two regular projections of the same knot with
different writhes, you know that you will have to use type I Reidemeister moves to get
from one to the other.

Colorings.

To color a knot one first must locate the arcs. These are the arcs which begin at one
under crossing and continue until the next and they are just connected arcs in the regular
projection. Note that the number of these arcs is equal to the number of crossings. Here
is our usual example with the arcs indicated by different colors.
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To color the knot is to pick a prime p and then
assign an integer to each arc so that at each cross-
ing the equation u1 + u2 = 2v mod p is satisfied,
where v is the integer associated to the over cross-
ing and u1 and u2 are the two integers associated
to the two under crossings.

Given two regular projections for a knot which
differ by a Reidemeister move, check that one has a
coloring mod p if and only if the other does. Hence
the existence of a mod p coloring is an invariant of
the knot.

To see whether one can find a p and a set of integers to associate to the arcs is a
non–trivial problem. These are linear equations so we can work in vector spaces over the
field with p elements.

Let us work out the theory for our example. Let x1 be the integer associated to the
yellow arc and let x2 be the integer associated to the red arc. Continue around the knot in
the direction we’ve started to get x3, . . . , x7. Number the crossings: 1 labels the crossing
where the under crossing changes from yellow to red; 2 is the next crossing travelling in
this direction; 3 the next and so on. The equations in this basis are described by a 7 × 7
matrix. Begin with the matrix

1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 1

and add one −2 to each row depending on the over crossing.

1 1 0 0 0 −2 0
0 1 1 0 −2 0 0

−2 0 1 1 0 0 0
0 0 0 1 1 0 −2
0 −2 0 0 1 1 0
0 0 −2 0 0 1 1
1 0 0 −2 0 0 1

The knot has a mod p coloring if and only if the subspace of solutions to this 7 × 7
system of homogeneous equations has dimension at least 2. By construction, the columns
add up to the zero vector so the solution space always has dimension at least one.
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The solution space to our system has dimension greater than 1 if and only if

det




1 1 0 0 0 −2
0 1 1 0 −2 0

−2 0 1 1 0 0
0 0 0 1 1 0
0 −2 0 0 1 1
0 0 −2 0 0 1




is divisible by p, where the displayed matrix is the 6× 6 matrix obtained by dropping the
last row and column. But this determinant is 15, so there are solutions mod 3 and mod 5.
Work out actual solutions if you wish.

It is also fun to observe that no matter which knot you have, the determinant is always
odd. This is no longer true for a link.

Groups.

One can also associate a group to a knot as follows. Orient the knot and fix a group
G. Assign to each arc an element of the group xi ∈ G so that the following equations are
satisfied. Suppose the two under crossings are assigned elements u1 and u2 with u1 coming
before u2 as you follow the knot in the direction indicated by the orientation. Let v be the
element associated to the over crossing. If the crossing is right handed, then the equation
is u2 = vu1v

−1; if the crossing is left handed, then the equation is u2 = v−1u1v. The
elements generate a subgroup of G and we associate this subgroup to the knot. One can
check that the associated group only depends on the regular projection up to Reidemeister
moves and so is an invariant of the knot.

One theoretical result is to notice that if x ∈ G is the element assigned to the first arc,
then the elements associated to the other arcs are conjugates of x. We can also replace x
by any element in its conjugacy class and alter the other assignments appropriately to get
a new solution. Hence we have not only assigned a group to the knot, but also a conjugacy
class of elements within the group. The elements of this conjugacy class must generate the
group. In general, not every element in a conjugacy class will be assigned to an arc, but
by using type II Reidemeister moves, one can find a new regular projection in which every
element in the conjugacy class is assigned to at least one segment.

There is a universal group in which our equations are satisfied. If you have not studied
these ideas, this paragraph can be skipped. To continue, the universal group associated to
a regular projection is given by generators and relations. The generators are the arcs and
there is one relation from each crossing. Denote this group by GP where P is the oriented
projection. All of the xi are conjugate in this group and this is the associated conjugacy
class. This group is universal in the following sense. Given any group G and elements
gi ∈ G, there exists a (necessarily unique) homomorphism h:GP → G such that h(xi) = gi

if and only if the gi satisfy the same relations as the xi. As an example, if we are given a
group G associated to the knot, then there is a unique homomorphism ϕ:GP → G which
is onto and which takes the xi assigned to an arc to the gi ∈ G assigned to the same arc.
It is worth remarking that if we make GP abelian by dividing out by the commutator
subgroup, the quotient group is Z since in the quotient all the xi are equal. It further
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follows that all the xi map either to 1 ∈ Z or they all map to −1. Moreover, any group
associated to a knot must have a cyclic abelianization. Groups which have this property
include dihedral groups, symmetric groups, simple groups and cyclic groups.

There is one more bit of structure to be squeezed out of our setup. Pick one arc
on which to begin. Then follow the knot in the direction of the orientation. Construct
an element of your group as a product. Each time you cross under an arc, write down
the element associated to the over crossing if the crossing is left handed, otherwise write
down the inverse of that element. When you have gone once around the knot, append
the element assigned to your initial segment raised to the writhe of the regular projection.
Call the result �P : it is called a longitude. The conjugacy class of �P is a knot invariant.
We discuss the proof below.

1 2 3

1

2

3

-1-2-3

-1

-2

-3

x 0

x 1

x 2

x 3

x 4

x 5

x 6

x 7

For P the regular projection we have been
studying, GP is generated by x0, . . . x6 with re-
lations x1 = x−1

5 x0 x5, x2 = x−1
4 x1 x4, x3 =

x−1
0 x2 x0, x4 = x−1

6 x3 x6, x5 = x−1
1 x4 x1, x6 =

x−1
2 x5 x2 and x0 = x−1

4 x6 x4. All the crossings
are left handed so the writhe is −7. A longi-
tude is �

(0)
P = x5x4x0x6x1x2x3x

−7
0 . If, instead of

starting at x0, which is a choice after all, we start
at x1, we get �

(1)
P = x4x0x6x1x2x3x5x

−7
1 . Check

�
(0)
P = x5�

(1)
P x−1

5 .

If we calculate x0�
(0)
P , we get �

(0)
P x0. Check this for the example above. For the general

case, consider the relation between the group GP and the longitude. Label the arcs x0,
. . . , xr−1 where x0 is a chosen starting arc and then the remaining ones are encountered
in order as one travels around the knot in the given direction. As one goes around the
knot in the preferred direction, one encounters over crossings at the end of each xi: let
xji

be the label for the over crossing. If the writhe of the projection is w, the longitude
is �

(0)
P = xε0

j0
xε1

j1
· · ·xεr−1

jr−1
xw

0 , where εi = +1 if the crossing at then end of xi is a left hand
crossing and −1 if it is right handed. The relations are xi+1 = x−εi

ji
xix

εi
ji

for 0 ≤ i < r − 1
and x0 = x

−εr−1
jr−1

xr−1x
εr−1
jr−1

. If we agree to write subscripts mod r, then this last relation
can be written as x(r−1)+1 = x

−εr−1
jr−1

xr−1x
εr−1
jr−1

so all the relations have the same form.
These relations can be rewritten as xεi

ji
xi+1 = xix

εi
ji

for 1 ≤ i < r. It is now easy to

calculate x0�
(10)
P = xε10

j0
· · ·xεi−1

ji−1
xix

εi
ji
· · ·xεr−1

jr−1
xw

0 for each 1 ≤ i < r − 1 and then finally

x0�
(0)
P = xε0

j0
xε1

j1
· · ·xεr−1

jr−1
x0x

w
0 = �

(0)
P x0. In other words, x0 and �

(0)
P commute.

If we start with xi, we get longitude �
(i)
P = xεi

ji
x

εi+1
ji+1

· · ·xεr−1
jr−1

xε0
j0
· · ·xεi−1

ji−1
xw

i , and we see

that xi and �
(i)
P commute. Moreover �

(i+1)
P = x−εi

ji
�
(i)
P xεi

ji
and we have xi+1 = x−εi

ji
xix

εi
ji

,

so the pairs
{
xi, �

(i)
P

}
are all conjugate. The element xi is called a meridian for the

longitude �
(i)
P and the pair

{
xi, �

(i)
P

}
is called a meridian–longitude pair. Recall that in the

abelianization of GP , xi went to ±1. Any longitude goes to 0 in the abelianization since
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r∑
i=1

εi = −w. It follows that it is not necessary to stress which element in a meridian–

longitude pair is the meridian and which is the longitude.
One can also check that the conjugacy class of a meridian–longitude pair is invariant

under the Reidemeister moves. A deep theorem of Waldhausen from the 1960’s says that
two knots are equivalent if and only if there is an isomorphism h:GP → GP ′ such that{
h(x1), h

(
�
(1)
P

)}
is a meridian–longitude pair for P ′. Again, we do not need to worry

over who is the meridian and who is the longitude since no isomorphism can interchange
them. There do exist examples of distinct knots with the same group, that is there is an
isomorphism between the groups, but none that takes a meridian–longitude pair for the
first knot to a meridian–longitude pair for the second knot.

If we reverse the orientation on the knot, we have the same arcs and over crossings
and handedness of each crossing, but the algebra looks a little different since both the
relations and the longitude depend on the direction we travel along the knot. Let xi,
εi, ji be as above. Start with the same arc to which we assigned x0 and let y0 be the
corresponding generator. Then travel around the knot in our new preferred direction to
get generators y1, . . . , yr−1. Note the same arc is labelled xi going one way and yr−i

going the other. Let ki be the subscripts for the over crossings and δi the sign. The
crossing labelled i in the current picture is labeled r − 1 − i in the old picture, and since
the handedness is independent of the orientation, δi = εr−1−i. Also ki = r − jr−1−i.
The relations are yi+1 = yδi

ki
yiy

−δi

ki
, 0 ≤ i < r. The function yi �→ x−1

r−i extends to
an isomorphism ι:GP− → GP , where P− denotes P with the opposite orientation. To
check this we need to see x−1

r−(i+1) = x
−εr−1−i

jr−1−i
x−1

r−ix
εr−1−i

jr−1−i
. But this relation is equivalent

to xr−i = x
εr−i−1
jr−i−1

xr−i−1x
−εr−i−1
jr−i−1

and this is one of the relations in GP . A longitude is

�
(0)
P− = yδ0

k0
· · · yδr−1

kr−1
yw
0 . Check ι

(
�
(0)
P−

)
= x

−εr−1
jr−1

· · ·x−ε0
j0

x−w
0 . Since x0 and xε0

j0
xε1

j1
· · ·xεr−1

jr−1

commute, ι
(
�
(0)
P−

)
=

(
�
(0)
P

)−1. Summarizing, we see that GP is the group for the knot
with the opposite orientation but when we write the group this way,

{
x−1

0 ,
(
�
(0)
P

)−1} is a
meridian–longitude pair for the knot with the opposite orientation.

It is hard to prove but there are oriented knots so that no deformation of three space
throws the knot with its initial orientation onto the same picture but with the opposite
orientation. Such knots are called non–invertible. The first such knots were not identified
until 1967 by Trotter. If an oriented knot can be deformed through ambient isotopies to
the same picture but with the opposite orientation, the knot is called invertible.

Theorem: A knot is invertible if and only if there is an automorphism ι:GP → GP such
that ι(x0) = x−1

0 and ι
(
�
(0)
P

)
=

(
�
(0)
P

)−1.

Recall that an automorphism of a group is another name for an isomorphism from the
group to itself.

Groups can be used to study the chiral problem, but not obviously since when all
the crossing are switched in a diagram, the arcs change in a manner that depends on the
knot. Using the description of the group of the knot as the fundamental group of R3

minus the knot, one can prove the result below. First observe that there are two types of
achirality. A knot can be (+)–achiral or (−)–achiral: (+)–achiral means that there is an
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ambient isotopy of 3–space which sends the knot onto its mirror image but with the same
orientation; (−)–achiral means that there is an ambient isotopy of 3–space that sends the
knot onto its mirror image but with the opposite orientation. The only if part of the next
result follows from Waldhausen’s theorem.

Theorem: A knot is (+)–achiral if and only if there is an automorphism α+:GP → GP

such that α+(x0) = x−1
0 and α+

(
�
(0)
P

)
= �

(0)
P . A knot is (−)–achiral if and only if there is

an automorphism α−:GP → GP such that α−(x0) = x0 and α−
(
�
(0)
P

)
=

(
�
(0)
P

)−1.
An older name for achiral is amphicheiral.

While these two theorems are correct, they are of limited usefulness since it is usually
difficult to prove the non–existence of isomorphisms with prescribed properties.

Exercise: The left–handed trefoil group is generated by two elements, subject to one
relation G =

〈
x0, x2 | x0x2x0 = x2x0x2

〉
, where both x0 and x2 are meridians. A

longitude commuting with x0 is �(0) = x2x
2
0x2x

−4
0 . Show the left hand trefoil is invertible

by producing an automorphism of G which takes x0 to x−1
0 and �(0) to

(
�(0)

)−1.
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