
We turn to some results on the HOMFLY polynomial. Recall that this is a Laurent
polynomial in two variables, traditionally � and m, satisfying three conditions.

1) P (L) is an invariant of the oriented link L, not just the particular projection
given.

2) P (unknot) = 1.
3) If L+, L− and L0 are related as below,

(∗) �P (L+) + �−1P (L−) + mP (L0) = 0

L+ L- L0

Next we record some results for later. The number of components of L+ and L− are
the same. The number of components of L0 changes. If the two strands under discussion
belong to the same component of the link L+ (which is equivalent to belonging to the same
component of L−) then L0 has one more component; if the two strands belong to different
components, then L0 has one less component than L+ and L−.

The next order of business is an algorithm for computing P (L). In practice, this is not
always the most efficient method for doing computations, but it is invaluable for proving
theorems.
Theorem 1. If L⊥⊥S1 denotes the link formed from a link L by adding an unknotted
circle inside a ball which misses L, P (L⊥⊥S1) = −(� + �−1)m−1P (L).

Corllary 2. If L is the unlink on n + 1 components, P (L) = (−1)n(� + �−1)nm−n.

Proof : The proof of the corollary is immediate from the theorem. To prove the theorem,
consider the effect of a type I Reidemeister move on a small straight arc of L, going from a
straight segment to one with one kink. Switching the crossing switches the handedness of
the kink, so both L+ and L− are just L. The link L0 is just L⊥⊥S1. Solving the equation
(∗) yields the formula.

A result to be proved later is

Theorem 3. By changing some of the crossings in a regular projection, any regular pro-
jection can be changed into a regular projection for the unlink.

Remark: In fact, we will give an algorithm for doing this.

The theorem says that given a link, we can mark some of the crossings to be switched,
say r of them, so that, when we have switched all r of them, we have the unlink. Consider
a crossing to be switched. Let ε be +1 if the crossing is a right handed one and −1 if it is
left handed. Let L′ be the link obtained by switching the crossing and let L0 be the link
obtained by splitting the crossing. Then (∗) yields

P (L) = −�−2εP (L′) − �−εmP (L0) .
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Now notice that if ω( ) denotes the writhe, 2ε = ω(L) − ω(L′) and ε = ω(L) − ω(L0), so
we can rewrite the formula as

P (L) = −� ω(L′)−ω(L)P (L′) − � ω(L0)−ω(L)mP (L0) .

If we define Q(L) = � ω(L)P (L) then we get

(4) Q(L) = −Q(L′) −mQ(L0) ,

a much simpler formula with which to work. The drawback is that Q is not an invariant
of the link, only of the projection, but since the writhe is not so bad to calculate, working
with a fixed projection is not too bad in practice. Actually, Q is a bit better than the last
sentence says. Given two regular projections of the same link with the same writhe, the
two Q’s for these projections are the same. So if you redraw the projection to keep the link
the same, just compute the before and after writhes and put some type 1 Reidemeister
moves in your new projection to make the writhes the same and keep going. One last
formula: if L is an unlink on n + 1 components, then Q(L) = (−1)n(� + �−1)n� ω(L)m−n.

If one is going to be computing a lot of writhes, it is good to have an easy way
of doing this. Here is an algorithm which computes the writhe in one trip around the
oriented link. Order the components (the order doesn’t matter) and pick a starting point
on each component (which doesn’t matter either). Given the close relations over the years
between sailors and knots, it is a bit surprising that more nautical terminology hasn’t crept
into knot theory, but here goes. The port side of a strand on a regular projection of an
oriented link is the left side as you face in the direction determined by the orientation.
The starboard side is the right side as you face in this direction.

To compute the writhe, travel around the link in the direction of the orientation
beginning at the chosen point on the first component. When you return to this point, move
to the second component and repeat until you have been once around each component.
Recall that you will go through each crossing twice. The first time through a crossing,
draw two dots. If you are going along an over crossing, put two dots on the port side, one
on each side of the under crossing. If you are on the under crossing, put two dots on the
starboard side, one on each side of the over crossing. Whenever you encounter a crossing
that already has two dots, add a −1 if the dots come before the crossing or add +1 if they
come after. This sum computes the writhe. Indeed, the ±1 you compute at each crossing
is the sign of that crossing.

To see this consider the figure below. The orientations on the strands are indicated
by the arrows. The numbers (1 or 2) at the bottom of each strand indicate the order in
which they were traversed. (This of course depends on the rest of the link.) The blue dots
are the dots and the sign of the crossing is indicated at the top. Convince yourself that
the sign given by the algorithm is the same as the sign given by the handedness and that
any oriented crossing with a given order on the strands can be rotated to one of these four
pictures.
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Here is a variation on the same algorithm. As before number the components and
pick starting points. Traverse the link as in the first algorithm and the first time you come
to a crossing, put down two dots as before. The second time you come to a crossing if the
dots come after the crossing, put two more dots down on the near side of it. The sign of
the crossing is just i number of dots where i =

√
−1. The next picture shows this version of

the algorithm, where we use green dots, when we need them, for the second pair.

port

+1 = i 4

1 2 starboard

+1 = i 4

2 1 port

-1 = i 2

1 2 starboard

-1 = i 2

2 1

Let us next calculate the HOMFLY polynomial for each trefoil. Let ε = +1 for the
right handed trefoil and −1 for the left. Let Tr+1 denote the right trefoil and Tr−1 the
left. Both the right and left trefoils can be unknotted by switching a single crossing and
the resulting unknot has writhe ε. In both cases, L0 is a two component link with two
crossings in the evident regular projection. They are both Hopf links with writhe 2ε.
Denote them by Hpε. Switching either of the crossings transforms the link to the unlink
on two components and the resulting split link is a one component link with one crossing,
hence the unlink. The two component link has writhe 0 and the unknot has writhe ε.

Using (4) gives Q(Trε) = −�ε ·1−mQ(Hpε) and Q(Hpε) = −
(
−(�+�−1)m−1

)1−m�ε ·1 =
(� + �−1)m−1 −m�ε. Hence Q(Trε) = −�ε + m2�ε − (� + �−1) = m2�ε − 2�ε − �−ε. Since
the writhe of Trε is 3ε, P (Trε) = �−3εQ(Trε) = m2�−2ε − 2�−2ε − �−4ε.

Errata: Looking at Figure 2.15 on page 47 and the answer for its HOMFLY polynomial
given in the next to the last paragraph, Flapan has confused the left and right trefoil.

Notice that the trefoil is chiral since the mirror image of Trε is Tr−ε and the two
polynomials are different. Recall that Z[�, �−1,m,m−1] is the free abelian group on all
monomials of the form �rms, r, s ∈ Z. Since P (Tr+1) and P (Tr−1) have different coeffi-
cients on the monomial �−4, they are not equal.

Our first theorem is a negative one.

Theorem 5: The HOMFLY polynomial for L is the same as for the link L with all the
orientations reversed.
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Proof : Pay careful attention to the form of the proof as it will be repeated a great deal in
the results to follow. We first introduce a certain amount of notation we will need in this
and subsequent proofs.

The unlinking number of a link projection is the minimum number of crossings we
need to switch to get a projection for the unlink. It exists by Theorem 3. If L is a regular
link projection, let u(L) denote the unlinking number. It can be difficult to compute in
practice, but we know it exists. Now there are u(L) crossings in L such that if we switch
them all, we get an unlink. If we just switch one of them, we get a new link, L′, and
u(L′) = u(L) − 1.

We denote the number of crossings in a regular link projection L by c(L). If we take
any crossing and form the resulting L0, c(L0) = c(L)−1. These two formulas are the basis
of many proofs by induction. Notice that if u(L) = 0 or c(L) = 0, then L is an unlink.

Let S be the set of all regular link projections for which the result holds.
Let L̄ denote the result of reversing the orientation on all the components of L. We

have ω(L) = ω(L̄), so it suffices to prove Q(L) = Q(L̄). If L is an unlink, L̄ = L and so,
any regular projection for the unlink has Q(L) = Q(L̄) so L ∈ S. This is usually the first
step in all the proofs to follow: check the result for all regular projections of the unlink.

We prove all regular link projections are in S by a double induction on c(L) and u(L).
The inductive step is the following. Fix k > 0 and u > 0. Assume every regular link
projection with c(L) < k is in S and further assume that every regular link projection
with c(L) = k and u(L) < u is in C. Then prove that every regular link projection with
c(L) = k and u(L) = u is in S.

If we can do this, all regular link projections are in S. If not, pick a regular link
projection which is not in S and which has the smallest c(L) amongst all such L: let
k = c(L). Since k = 0 implies L is an unlink, k > 0. By our choice of k, any regular link
projection with c(L) < k is in S. From all the regular link projections with c(L) = k pick
one with the smallest u(L): let u = u(L). Since u = 0 implies L is an unlink, u > 0. If L
is any regular link projection with c(L) = k and u(L) < u, then we know L ∈ S. But then
our inductive step shows L ∈ S, contrary to assumption.

The proof of the inductive step is reduced to working with (4) as follows. Pick a
crossing so that the switched link L′ satisfies u(L′) = u−1 < u and then c(L0) = k−1 < k.
Hence both L′ and L0 are in S and we have to use (4) to deduce L ∈ S.

The details for this theorem follow. It doesn’t matter if we switch the crossing and
then reverse the orientations or first reverse the orientations and then switch the crossing:
i.e. L′ = (L̄)′. Likewise L0 = (L̄)0.

Since L′ ∈ S, Q(L′) = Q( L′ ) and since L′ = (L̄)′, Q(L′) = Q
(
(L̄)′

)
. Likewise,

Q(L0) = Q
(
(L̄)0

)
. Apply (4) to L to get Q(L) = −Q(L′) − mQ(L0) and to L̄ to get

Q(L̄) = −Q
(
(L̄)′

)
−mQ

(
(L̄)0

)
so Q(L) = Q(L̄) and so L ∈ S.

The HOMFLY polynomial is however much better at detecting chirality. We saw this
for the trefoils and we can generalize appropriately.

Given any regular link projection L, let L∗ denote the projection obtained by switching
all the crossings: L∗ is a regular projection for the mirror image of L. There is a ring

automorphism of Z[�, �−1,m,m−1] which takes � to �−1. We write this as bar: �amb =
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�−amb. Check that given two polynomials p1 and p2, p1 + p2 = p1+p2 and p1 · p2 = p1 ·p2.
Since 0 = 0 and 1 = 1, bar is a ring homomorphism and since it is its own inverse, it is a
ring automorphism. (There is also an automorphism which takes m to m−1 but we will
have no need of it.)

Theorem 6: P (L∗) = P (L) .

Corollary 7: If a link L is achiral, P (L) = P (L).

Proof : The corollary follows from the theorem since if L is achiral, L∗ = L. Note ω(L∗) =
−ω(L) so our theorem is equivalent to Q(L∗) = Q(L). Let S be the set of regular link
projections L with Q(L∗) = Q(L).

Unlinks are achiral and we can check that for an unlink L, P (L) = P (L) and hence
Q(L∗) = Q(L) for them, so regular projections of an unlink are in S. Check that for any
regular link projection, c(L∗) = c(L) and u(L∗) = u(L).

As usual, let L′ be L with a crossing changed so u(L′) = u(L) − 1 and let L0 be the
link projection with the crossing split. Then (L∗)′ = (L′)∗ and (L∗)0 = (L0)

∗. As usual,
(4) shows Q(L∗) = Q(L).

Remark: The converse to Corollary 7 is false. The first example for a knot is 942 which
satisfies the conclusion of the corollary but is chiral anyway.

The next result gives some structure to P (L) as a Laurent polynomial in m. Write

P (L) =

∞∑
−∞

pLi (�)mi, where pL(�) is a Laurent polynomial in Z[�, �−1]. We also need the

function ν(L) which is the number of components of L minus 1.

Theorem 8: If lrms occurs with a non–zero coefficient in P (L), then r ≡ ν(L) and
s ≡ ν(L) mod 2. In particular pLs (�) = 0 if s �≡ ν(L) mod 2.

Proof : If L is an unlink, Corllary 2 says P (L) = (−1)ν(L)
(
� + �−1

)ν(L)
m−ν(L)

which

expands to P (L) = (−1)ν(L)

( ν(L)∑
i=0

(
ν(L)

i

)
�ν(L)−i�−i

)
m−ν(L) so the non–zeros terms are

�ν(L)−2im−ν(L). The theorem follows for the unlink.
Since we are dealing with powers of � as well as those of m, it is easier to work with

the equation P (L) = −�−2εP (L′) − m�−εP (L0) and we may assume the theorem holds
for L′ and L0. If �smr occurs with non–zero coefficient in P (L) then �s+2εmr must occur
with non–zero coefficient in P (L′) or else �s+εmr−1 must occur with non–zero coefficient
in P (L0). But then the theorem says s + 2ε ≡ ν(L′) or else s + ε ≡ ν(L0) mod 2. But
ν(L′) = ν(L) and ν(L0) = ν(L0) ± 1 and ε = ±1 so the result for s follows. A similar
calculation proves the congruence for r.

Remark: One way to rephrase Theorem 8 is that (�m)ν(L) ·P (L) is a Laurent polynomial
in �2 and m2.
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Theorem 9: Let L be a regular projection of a link. Then

1) If pLs �= 0, then −ν(L) ≤ s ≤ 2c(L) − ν(L).

2) pL−ν(L)(1) ≡ 2ν(L) mod 2ν(L)+1. In particular, pL−ν(L)(�) �= 0.

3) For ν(L) < r, pL−ν(L)+2r(�) = (� + �−1)ν(L)−r p̃L−ν(L)+2r(�)

where p̃L−ν(L)+2r(�) ∈ Z[�, �−1].

4) P (L)(�, � + �−1) = (−1)ν(L).

Proof : Check that 1), 2), 3) and 4) hold for any regular projection of the unlink on any
number of components. Note Q(L) decomposes the same way as P and the pieces are
qLs (L) = � ω(L)pLs (�). Observe that the qLs satisfy 1), 2) and 3) if and only if the pLs do. We
can rewrite (4) as

qLs (�) = −qL
′

s (�) − qL0
s−1(�) .

Note that L0 has either ν(L) − 1 or ν(L) + 1 components. If the two strands of the
crossing lie in different components, then ν(L0) = ν(L) − 1: if the two strands lie in the
same component then ν(L0) = ν(L)+1. We introduce a bit of notation to simplify writing
our argument. Let L+

0 be the result of splitting the crossing if the number of components
increases by 1 and let L−

0 be the result otherwise. Hence ν(L±
0 ) = ν(L) ± 1. Furthermore

ν(L′) = ν(L).

As usual c(L′) = c(L) and c(L±
0 ) = c(L) − 1.

We need to prove that L satisfies our conditions under the assumption that L′ and

L±
0 do. If qLs �= 0, then either qL

′
s �= 0 or q

L±
0

s−1 �= 0.

If qL
′

s �= 0, −ν(L′) ≤ s ≤ 2c(L′) − ν(L′) and s ≡ ν(L′) mod 2. The values of c and ν
evaluated at L′ are the same as their values evaluated at L so 1) follows.

If qL0
s−1 �= 0, then

−ν(L0) ≤ s− 1 ≤ 2c(L0) − ν(L0) .

For L+
0 our formula becomes −ν(L)− 1 ≤ s− 1 ≤ 2c(L)− 2− ν(L)− 1 < 2c(L)− 1− ν(L)

from which 1) follows. For L−
0 , our formula becomes −ν(L) − 1 < −ν(L) + 1 ≤ s − 1 ≤

2c(L) − 2 − ν(L) + 1 = 2c(L) − ν(L) − 1 from which 1) follows again.

To evaluate qL−ν(L) apply qL−ν(L)(1) = −qL
′

−ν(L)(1) − qL0

−ν(L)−1(1). By hypothesis

qL
′

−ν(L)(1) ≡ 2ν(L′) mod 2ν(L′)+1, so qL
′

−ν(L)(1) ≡ −2ν(L) mod 2ν(L)+1. From 1), q
L−

0

−ν(L)−1 =

0 and we are done. By induction q
L+

0

−ν(L)−1(1) = q
L+

0

−ν(L+
0 )

(1) ≡ 2ν(L+
0 ) mod 2ν(L+

0 )+1, so

q
L+

0

−ν(L)−1(1) ≡ 2ν(L)+1 mod 2ν(L)+2, or q
L+

0

−ν(L)−1(1) ≡ 0 mod 2ν(L)+1 and 2) follows again.

Now we turn to 3). Note 3) holds for r ≥ ν(L) but the result is vacuous. Nevertheless,
we will not use r < ν(L) in the proof. From our formula we get qL−ν(L)+2r = −qL

′

−ν(L)+2r −
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qL0

−ν(L)+2r−1. By our induction hypotheses,

qL
′

−ν(L)+2r = qL
′

−ν(L′)+2r = (� + �−1)ν(L)−r q̃L
′

−ν(L′)+2r .

q
L−

0

−ν(L)+2r−1 = q
L−

0

−(ν(L−
0 )+1)+2r−1

= q
L−

0

−ν(L−
0 )+2r−2

= q
L−

0

−ν(L−
0 )+2(r−1)

= (� + �−1)ν(L−
0 )−(r−1) q̃

L−
0

−ν(L)+2r−1 = (� + �−1)ν(L)−r q̃
L−

0

−ν(L)+2r−1 .

q
L+

0

−ν(L)+2r−1 = q
L+

0

−(ν(L+
0 )−1)+2r−1

= q
L+

0

−ν(L+
0 )+2r

= (� + �−1)ν(L+
0 )−r q̃

L+
0

−ν(L)+2r−1

=(� + �−1)ν(L)+1−r q̃
L+

0

−ν(L)+2r−1 = (� + �−1)ν(L)−r
(
(� + �−1)q̃

L+
0

−ν(L)+2r−1

)
.

Hence (�+�−1)ν(L)−r divides each term on the right in our rewrite of (4) and hence divides
pL−ν(L)+2r.

Lastly, we turn to 4). Here it is easiest to work directly with (4), so

P (L)(�, � + �−1) = − �−2εP (L′)(�, � + �−1) − �−ε(� + �−1)P (L0)(�, � + �−1)

=(−1)ν(L)
(
−�−2ε · 1 − �−ε(� + �−1) · (−1)

)
=(−1)ν(L) , since ε = ±1.

Remark: Both c(L) and u(L) depend on the projection. We can produce a link invariant
by defining C(L) to be the minimum over all regular projections for L of c(L). We can
also define U(L) by minimizing u(L). These are some of the easiest invariants of a link
to define and are two of the most difficult to compute. The HOMFLY polynomial and
other related polynomials were the first computable invariants to give some lower bounds
for these invariants. Note that 1) implies s ≤ 2C(L) − ν(L).

People have compiled tables of HOMFLY polynomials, but some care is needed in
reading these tables. There is another polynomial also called the HOMFLY polynomial,
which we shall denote by P̂ , and use variables a and z to distinguish it from P . This
“other” HOMFLY polynomial satisfies

1) P̂ (L) is an invariant of the oriented link L.
2) P̂ (unknot) = 1.
3) If L+, L− and L0 are as usual,

(∗̂) a−1P̂ (L+) = aP̂ (L−) + zP̂ (L0)

It is easy to translate from one polynomial to the other.

Theorem: Let P (L) =
∑

cr,s arzs and P̂ (L) =
∑

ĉr,s arzs. Then

cr,s = (−1)
−r+s

2 ĉ−r,s and ĉr,s = (−1)
r+s
2 c−r,s

Proof : Define a Laurent polynomial XL(�,m) = P̂ (L)(i�−1, im) where i =
√
−1. Then ∗̂

becomes
(
i�−1

)−1
XL+ = (i�−1)XL− + (im)XL0 , or (−i�)XL+ = (i�−1)XL− + (im)XL0 , or
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0 = (i�)XL+ + (i�−1)XL− + (im)XL0 . Divide by i to get �XL+ + �−1XL− + mXL0 = 0.

Xunknot = P̂ (unknot)(i�−1, im) = 1, so XL = P (L).
Hence

∑
cr,s�

rms =
∑

ĉr,s(i�
−1)r(im)s. But ĉr,s(i�

−1)r(im)s = ĉr,si
r+s �−rms, so∑

cr,s�
rms =

∑
ĉ−r,si

−r+s �rms. Since r ≡ s mod 2, we can write i−r+s = (−1)
−r+s

2 .

I found another set of tables (www.math.toronto.edu/stoimeno/poly.ps.gz) where the
author used the relation

x−1
...
P (L+) + x

...
P (L−) = y

...
P (L0) .

Check that cr,s = (−1)s...c−r,s for this choice.

For our next theorem using (4), we need a construction. Let L1 and L2 be oriented
links. The link L1 is equivalent to a link in the first octant so that the projection (x, y, z) →
(x, y) is a regular projection. It lands in the first quadrant. Similarly, L2 is equivalent to
a link in the second octant so that the projection (x, y, z) → (x, y) is a regular projection
landing in the second quadrant. Let L1⊥⊥L2 denote the link obtained by taking the
disjoint union. This extends our previous notation L⊥⊥S1. Theorem 1 applies inductively
to the case for which L2 is an unlink on n components and yields P (L1⊥⊥L2) =

(
−(� +

�−1)m−1
)n

P (L1). Here is a generalization.

Theorem 10.
P (L1⊥⊥L2) =

(
−(� + �−1)m−1

)
P (L1)P (L2) .

Proof : For the writhes under our projection (x, y, z) → (x, y), we have ω(L1⊥⊥L2) =
ω(L1) + ω(L2), so it suffices to prove the formula for the Q polynomials. Fix the link
L1 and temporarily define R(L) = Q(L1⊥⊥L). We need to prove R(L) = A ·Q(L) where
A =

(
−(� + �−1)m−1

)
Q(L1).

If L is the regular projection of an unlink, then this formula follows from repeated
applications of Theorem 1. If we apply (4) to R(L) we see R(L) = −R(L′) − mR(L0),
which is the same as (4) applied to L and then multiplying by the constant A.

We want to produce some examples of links with the same HOMFLY polynomial. To
do this we describe a construction and a theorem. Define another operation on oriented
links, L1#L2 as follows. Take L1⊥⊥L2 with L1 in the first octant, L2 in the second and
(x, y, z) → (x, y) a regular projection. Move L2 straight down so it lies below the xy–plane
( just add some large negative constant to the z–coordinate). Just to be safe, make it lie
below the plane z = −10. Move L1 straight up so it lies above the xy–plane and indeed
above the plane z = +10.

Pick a point p1 on L1which is not a crossing. Consider the tangent line to this curve
in R3 at the point p1. Suppose the curve #r is parameterized by arc length with #r(0) = p1.
If #v is the derivative, #v �= 0 (Why you 225 fans?). Since the projection is regular, the
points where the projection of #v to the xy–plane is 0 are isolated so choose p1 so that the
projection of #v to the xy–plane is non–zero. Pick p2 on L2 similarly. By adding constants
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to the x and y coordinates of L1 arrange for the projection of p1 to the xy–plane to be the
origin. Similarly slide L2 so that the projection of p2 is the origin.

Return to the discussion of L1 and p1. Let #w denote the projection of the derivative
at p1 and recall #w �= 0. The projection of p1 to the xy–plane is the origin #0. Let r̂(s)
denote the projection of #r(s) to the same plane. An equation for the tangent line to r̂ at
the point #0 is s · #w. Consider the function F (s, t) = (1− t) · r̂(s) + t · (s · #w) defined for all
real numbers s and t and landing in the xy–plane. Note F (s, 0) = r̂(s); F (s, 1) = s · #w and
F (0, t) = #0. Look at the projection of L1 into the xy–plane. Near the origin we see a curve
and we can restrict s to a sufficiently small interval, say [−ε1, ε1] so that the projection of
that segment goes through no crossings of the projection of L1. Since #w �= 0, either its
x–component, #wx �= 0, or its y–component, #wy �= 0. If necessary, jiggle the embedding
L1 → R3 a small amount to insure both #wx and #wy are non–zero. If necesaary, pick a
smaller ε1 so that for all s ∈ [−ε1, ε1], both the x and y components of the derivative of
r̂(s) never vanish. It follows that F is an embedding of [−ε1, ε1] × [0, 1] into R2.

A band is just a short name for an embedded rectangle. Add a band to our segment
which just drops straight down to z = +10. In the plane z = 10 we see the same curved
segment that we saw in the xy–plane. Continue the band down to z = 9 using the formula(
F (s, z−9), z

)
. The intersection of our band with the plane z = 9 is a straight line segment.

Continue the band on down to the xy–plane as follows. One edge of our band is oriented
since the segment from L1 is and this determines an orientation on the whole band. Drop
the point (#0, 9) straight down. As you go, rotate the line segment about its center as
necessary so that it intersects the plane z = 8 in a segment of the line of intersection of
z = 8 with x = 0. In other words, in a segment of the line (0, y, 8). Further arrange so
that the preferred orientation on the segment points in the direction of increasing y. Now
drop straight down to the xy–plane.

Add a band in a similar manner for p2 ∈ L2 except go up the z–axis and rotate so
the segment of the line (0, y,−8) points in the direction of decreasing y. Make one last
adjustment to insure ε1 = ε2.

In the xy–plane the band coming down from L1 and the band coming up from L2

intersect in the same line segment so their union is a single band B. The band B intersects
L1⊥⊥L2 in two segments, one in L1 and the other in L2. Each of these segments is an entire
side of B and they are opposite sides of the band. Call the one intersecting L1 the “top”
and the one intersecting L2 the “bottom”. The other two sides could be called “left” and
“right” except this depends on which way you are viewing the band. However, the phrase
“left” and “right” is well–defined. The link L1#L2 is the link obtained from L1⊥⊥L2 ∪B
by deleting the interior of B and the open segments in L1⊥⊥L2. Now L1#L2 minus the
“left” and “right” sides of the band is identical to L1⊥⊥L2 minus the segments from L1 and
L2. The orientation on L1⊥⊥L2 orients this subset and this orientation extends uniquely
to L1#L2.

We turn to the uniqueness of this operation. First of all, with the links and the points
fixed, we still can choose the width of the bands and can rotate them a little or a lot as we
go to the xy–plane. Given two widths, we can choose a third which is smaller than both
and if one width is smaller than the other, one of the bands is contained in the other and
in this case the two sums are easily seen to be equivalent. Hence the width of the bands
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do not matter as long as they satisfy the requirements laid out above. If we do different
rotations the net result is that the band is rotated be some number of full twists. A full
twist is a rotation through ±360 degrees. But given the link constructed using one band,
the link constructed with that band rotated by a full twist is equivalent since we can rotate
the link L2 by 360 degrees which brings it back where it started.

A more informal description may be more convincing. Take models for L1 and L2.
Take a rubber band and glue one end to L1 at p1 and the other end to L2 at p2. Put L1

over L2. You can put twists in the rubber band just by rotating the model for L2, but you
certainly aren’t changing the link.

If we choose a different point on L1 but still on the same component as our first choice,
then we can shrink L2 until it is very small and then use the band to draw it up until it is
very close to the strand on L1. Then we can slide the whole picture along the component
until we get to our original point and then use the original band to drop L2 back down
and then expand it back to its original size. This shows that L1#L2 only depends on
the component of L1 in which we chose our point. A similar argument shows that it only
depends on the component we chose in L2. A variation on this argument shows that the
order of the links does not matter either. If you have three links, a variation on this
argument also shows

(
L1#L2

)
#L3 and L1#

(
L2#L3

)
are equivalent links as long as the

same components are chosen in each link. Finally, if L1 and L′
1 are ambient isotopic, after

we shrink L2 into a small neighborhood of p1, we can drag it along through the isotopy
and then expand it again. This shows L1#L2 only depends on the equivalence classes of
the two links and which two components we are adding together.

However, if L1 has n components and L2 has m, there are still potentially n · m
different links represented by the symbol L1#L2. This is the connected sum of knots when
both L1 and L2 are knots and since 1 · 1 = 1, it is an associative, commutative operation
on equivalence classes of knots.

A knot K is called prime if whenever K = K1#K2, either K1 or K2 is trivial. The
trivial knot is a unit for connected sum. It is a theorem that every knot K is a sum of
prime knots and that the non–trivial knots which occur in a prime decomposition of K
are unique up to permutation. In particular, the trivial knot is the unit for connected sum
and no two non–trivial knots can sum together to give a trivial knot.

But the lack of uniqueness for multi–component links plus the next theorem will give
us examples of different links with the same polynomial.

Theorem 11: P (L1#L2) = P (L1) · P (L2).

Proof : In the construction on L1#L2, the projection to the xy plane is no longer regular.
(We have those long vertical drops and ascents.) The projection into the yz–plane is
regular in the region −9 ≤ z ≤ 9 and we can jiggle L1 and L2 separately until the
projection of the whole link into the yz–plane is regular. Since we can always add full
twists to the band, we can insure that in this projection there is at least one crossing
between z = −9 and z = 9. If we switch this crossing we just have a band with a
different number of twists and if we split at this crossing we just get a link equivalent
to L1⊥⊥L2. Hence �P (L1#L2) + �−1P (L1#L2) + mP (L1⊥⊥L2) = 0 and P (L1⊥⊥L2) =(
−(� + �−1)m−1

)
P (L1)P (L2). Hence (� + �−1)P (L1#L2) = (� + �−1)P (L1) · P (L2) and
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the result follows since Z[�, �−1,m,m−1] is an integral domain.

Remark: Theorem 11 says that P is multiplicative for the connected sum of knots.

We now turn to an invariant which will enable us to show that sometimes L1#L2 really
does depend on which components are added. An n component link L is an embedding
⊥⊥n

i=1 ei:⊥⊥ S1 → R3. Given a link L, we say L1 is a sublink of L if there are integers
i1, . . . , ir so that L1 is the embedding ⊥⊥r

j=1 eij :⊥⊥ S1 → R3. Loosely speaking, L1 is
a subset of L which either does not contain a component of L or else contains the entire
component. If L is oriented so is each component of L and so L1 is naturally oriented by
restricting the orientation from the components of L.

Given given two oriented sublinks, L1, L2 ⊂ L which are disjoint, define the linking
number. link(L1, L2) ∈ Z by summing the signs of the crossings for which one strand is
in L1 and the other is in L2 and dividing by 2. There are several things to check in this
definition, but first note that link(L1, L2) = link(L2, L1) since we sum exactly the same
numbers.

First check that link(L1, L2) is unchanged by Reidemeister moves. For type I moves
this is obvious because the kinks introduced or deleted involve only a single strand. For
type II moves, if both strings are in one sublink, the crossings make no contribution to
link(L1, L2), whereas if they are in different sublinks one crossing contributes a +1 and the
other a −1. For type III moves, the three strands could all belong to the same sublink and
hence make no contribution to the linking number. Otherwise, two of the stands belong to
one sublink and one belongs to the other. Without loss of generality, we may assume two
of them belong to L1 and one belongs to L2. There are three ways to choose the strand
belonging to L2 and you can check that link(L1, L2) is unchanged in all three cases. This
shows link(L1, L2) is a link invariant, but it is still not proved that it is an integer.

If we switch a crossing on L, either link(L1, L2) is unchanged or link(L1, L2) changes
by ±1. Crossing changes eventually unlink L and hence L1 and L2 and for these sublinks
link(L1, L2) = 0. Hence in general link(L1, L2) ∈ Z.

We record how link(L1, L2) changes under our various changes in a link. If we reverse
all the orientations on L1 and L2, then link(L1, L2) is unchanged. If we reverse all the
orientations on one sublink and keep them the same on the other, link(L1, L2) switches
sign. It also switches sign if all the crossings in L are switched. Finally, a link with n
components has n knot sublinks. If the subknots for L1 are K1, . . . , Kn and the subknots

for L2 are K ′
1, . . . , k

′
m, then link(L1, L2) =

i=n∑
i=1

j=m∑
j=1

link(Ki,K
′
j).

Here is an invariant of oriented links. It is most easily presented as a Laurent poly-
nomial in a variable z. For each oriented link L with n components, let the subknots be
K1, . . . , Kn in any order. Then define

L(L) =

n∑
i=1

zlink(Ki,L−Ki) .

This invariant behaves a lot like the HOMFLY polynomial except it is much more primitive.
It does not change if all orientations are reversed. Define bar in Z[z, z−1] by sending z to
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z−1 and extend to an automorphism. If L∗ is the mirror image of L, L(L∗) = L(L). Hence
if the oriented link is achiral then L(L) = L(L).
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To describe our examples, let us take a minute to introduce an effective way of de-
scribing certain complicated knots and links. There is an example below of the general
description coming next.

The diagram has some oriented arcs and some boxes. On the boundary of a box, we
see four strands, two at one end of the box and two more at the other. The strands at one
end are both going in and at the other end they are both going out. Inside each box is an
integer.

To go from a diagram like this to a regular projection of a link, replace a box with
integer n by two strands where the strands cross each other inside the region of the box
|n| times and are right handed crossings if n > 0 and left handed otherwise.

-4

Since n is even, this regular projection is that of a link with 2 components. The

linking number between these two components is
−4

2
= −2. Check that is we replace the

−4 by ±2 we get the right handed Hopf link for +2 and the left handed Hopf link for
−2. We get the right handed trefoil for +3 and the left handed trefoil for −3. Note 0
gives the standard picture of the 2 component unlink and ±1 give the two one crossing
pictures of the unknot. Let H〈n〉 be the knot or link with the same picture as above but
with the integer n in the box. In particular, the picture is H〈−4〉. Note that H〈n〉 has
some obvious symmetries. If we rotate H〈n〉 360 degrees around the vertical line through
the box, we get H〈n〉 back again but with the components switched. If we rotate by 360
degrees through the horizontal line through the box, we get H〈n〉 back again except that
all the orientations have been reversed. Finally, notice that the mirror image of H〈n〉 is
H〈−n〉.

Exercise 1: Given that P (H〈2〉) = −�−1m + �−2(� + �−1)m−1 and P (H〈3〉) = �−2m2 −
2�−2 − �−4, compute H〈n〉 for n = 4, 5 and 6.

Exercise 2: For n > 0 prove by induction that P (H〈n〉) is (−1)n−1�−n+1mn−1 plus terms
of order strictly smaller in m. Note that the theorem is false for n = 0 so you must start
your induction with n = 1. Given the result for n > 0 prove (directly without induction)
that for n < 0, P (H〈n〉) is (−1)n−1�−n−1m−n−1 plus terms of order strictly smaller in m.

Remark: Notice that this proves that all the H〈n〉 are distinct (except for H〈1〉 = H〈−1〉).
I have no idea what it means, but note that the formula for P (H〈0〉) is what you get by
adding the answer you would get by assuming the formula for n > 0 worked for n = 0 to
the answer you would get if the formula for n < 0 worked for n = 0.

To construct our examples, let L be the link below. It is a link with three components
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and the letters next to the strands serve merely to identify the components. Our examples
are H〈−4〉#L. Notice that it does not matter which component of H〈−4〉 we sum with
because of the symmetry of H〈−4〉.

10 6

A B C

Let LA denote H〈−4〉#L using component A from L; let LB and LC be defined
similarly. Then P (LA) = P (LB) = P (LC) by Theorem 11. But L(LA) = z−2 + 2z3 + z8;
L(LB) = z−2 + z3 + z5 + z6; L(LC) = z−2 + z + z5 + z8, so all three links are distinct.

Let H〈p, q〉 denote the 3 component link that results if the 10 in the figure is replaced
by 2p and if 6 is replaced by 2q. Hence the L of the last paragraph is H〈5, 3〉. Note
H〈p, q〉 = H〈2p〉#H〈2q〉 and we saw above that it doesn’t matter which component is
added to which for these particular links. You might want to wonder how the orientation on
the left most component got switched from up to down. By rotating around the horizontal
line through the middle, we see H〈p, q〉 with the given orientation is equivalent to H〈p, q〉
with all orientation switched. This gets the left most component oriented up, but now the
right most one points down.

Exercise 3: There are nine ways to form the 5 component link H〈p, q〉#H〈r, s〉. Can you
find integers p, q, r and s so that all nine links are distinct? They do all have the same
HOMFLY polynomial by Theorem 11. You might want to start by figuring out how to
compute L(L1#L2) − L(L1) − L(L2) in terms of the two components being added.
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