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We discuss a notion of equivalence which is a bit different than the rigid equivalence
we discussed earlier but is closely related to it. We will see that this relation, called finite
order equivalence, is just what we need to exploit a big theorem of Flapan.

We need to explain two theorems from 3 manifold topology. The three manifold that
is relevant to this discussion is S3 which can be thought of in several ways. One way is
that it is just R3 union a point ∞. Analogous examples which are easier to visualize are
R1 ∪ ∞ is the circle S1 and R2 ∪ ∞ is the two sphere S2. All three of these examples
can also be described as the unit sphere in Euclidean space of one higher dimension:
S1 = {x2+y2 = 1 ⊂ R2}; S2 = {x2+y2+z2 = 1 ⊂ R3}; S3 = {x2+y2+z2+t2 = 1 ⊂ R4}.

Our first result is that any diffeomorphism f :R3 → R3 extends to a homeomorphism
f̂ :S3 → S3 defined as f on any point in R3 and f̂(∞) = ∞. If f is the identity so is f̂ .
Since R3 ⊂ S3 we can also think of h as an embedding ĥ:G → S3.

For notation, if f is a function from S3 to itself, let f (n) denote the composition of f
with itself n times. If n = 0 we define f (0) to be the identity and if f is a homeomorphism,
we define f (−n) to be f−1 composed with itself n times. A homeomorphism f :S3 → S3

has finite order provided that f (n) = f (0) for some integer n.
We say two automorphism of an embedded graph h:G → S3, say θ1 and θ2, are fo–

equivalent provided there exists a homeomorphism f of finite order such that f ◦ h ◦ θ1 =
h ◦ θ2.

The notion of fo–equivalence has some points in common with rigid equivalence and
some points of divergence. Notice first that if θ1 and θ2 are rigidly equivalent via r, then
r has finite order and so r̂ shows that θ1 and θ2 are fo–equivalent. We could discuss a
similar notion of fo–equivalence in which we replaced S3 by R3 and again the R3 version
would imply the S3 version. We do not bother since Flapan’s theorem only applies to the
S3 version and it is not true that fo–equivalent θ can necessarily be made equivalent by a
finite order diffeomorphism of R3.

Perhaps the biggest difference between fo and rigid equivalence is that the set of θ
fo–equivalent to the identity map of G do not form a subgroup. If θ is fo–equivalent to
the identity, then so is θr for any r, but there is no obvious reason why θ1 ◦ θ2 should be
fo–equivalent to the identity even if both θ1 and θ2 are.

Before stating Flapan’s theorem, we need a definition. Flapan calls a graph 3–
connected if we can remove any 2 vertices from G, along with the edges incident to those
vertices, and always have only one component.

Theorem 1:(Flapan Theorem 6.1 p. 165) Let h:G → S3 be an embedding of a 3–
connected graph. Let f :S3 → S3 be a homeomorphism and θ an automorphism of G such
that f ◦ h = h ◦ θ. Equivalently, let θ ∈ Auth(G). Then there exists a homeomorphism
of finite order, f1:S3 → S3 and a new embedding h1:G → S3 such that f1 ◦ h1 = h1 ◦ θ.
If f preserves orientation, then f1 can be chosen to preserve orientation and if f reverses
orientation f1 can be chosen to reverse orientation.
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Remark: We have no control over the f1 or the h1, but notice that the θ is the same.

Flapan’s result is very powerful because of some theorems of P. A. Smith which say
that the fixed point set of a finite order homeomorphism of S3 is very restricted. It can
be empty; it can be two points, or a circle (S1), or an S2 or an S3. Note two points is
the solution set to x2 = 1 in R1 so we often write S0 instead of two points. This way we
can state Smith’s theorem as: the fixed point set of a finite order homeomorphism of S3

is either empty or an Sr for r = 0, 1, 2 or 3. Smith’s theorem actually has a refinement of
some relevance to us which says that the fixed set of f is empty, S1 or S3 if f is orientation
preserving and S0 or S2 if f reverses orientation. Note that if the fixed set of an orientation
reversing f is S2, then f (2) is the identity since the fixed set of f is fixed by f (2) so its
fixed set can only be S3. There is a version for S2 as well, which says that if f preserves
orientation and has finite order, the fixed set is S0; if f reverses orientation f has no fixed
points or else S1 is the fixed set.

Assume that there is at most one edge between any two vertices in G. If θ is an
automorphism of G, let Gθ be the subgraph of G consisting of all vertices v such that
θ(v) = v together with all edges in G both of whose endpoints are vertices of Gθ. This
is not the whole story concerning what θ fixes. If θ has even order, there may be edges
whose two endpoints are exchanged by θ.

Define G[θ] to be Gθ plus one isolated vertex for each edge whose endpoints are
interchanged. The number of vertices of G[θ] can be worked out from the structure of the
orbits of θ acting on the vertices of G. The number of vertices of Gθ is the number of
orbits of this action with 1 element: the number of vertices of G[θ] is at most the number
of orbits with one or two elements. The difference between the number of vertices in G[θ]

and the number of vertices of Gθ is precisely the number of orbits with two vertices for
which these two vertices are joined by an edge. Notice that if there are orbits with two
elements, θ must have even order. If θ has order 2 and if there is at most one edge between
any two vertices, then there are orbits with 2 vertices since every orbit has one or two
vertices and if they all had one, θ would be the identity.

Define G − Fix(θ) to be the subgraph of G whose vertices are all the vertices of G
which are not in Gθ: an edge of G is in G − Fix(θ) provided neither incident vertex is in
Gθ nor are the two incident vertices exchanged by θ.

Because of the next two lemmas, the fixed set of f and G[θ] are related. If f is a
finite order homeomorphism of S3, let Fix(f) denote the subset of all points x ∈ S3 with
f(x) = x.

Lemma 2: Let f be a homeomorphism from [a, b] to itself. Suppose f has finite order. If f
preserves orientation (f(a) = a), then f is the identity. If f reverses orientation (f(a) = b)
then f is an involution and there is a unique point x ∈ (a, b) which is fixed by f . Let
g: [a, x] → [x, b] be the restriction of f . Then f restricted to [x, b] is g−1.

A theorem from advanced topology called the Jordan–Brower separation theorem says
that if you have an Sn−1 embedded in any way in Sn, then Sn − Sn−1 divides into two
pieces and any path from one piece to the other must cross the S2. Applied to our situation
it says
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Lemma 3: Let f :S3 → S3 have finite order with Fix(f) homeomorphic to S2. Let x be
any point in S3 − Fix(f). Then any path from x to f(x) must cross the fixed set. If x
and y can be joined by a path in S3 − Fix(f) then any path from x to f(y) must cross
the fixed set.

Theorem 4: Suppose there is at most one edge between any two vertices of G. Let
h:G → S3 be an embedding and let f :S3 → S3 be a finite order homeomorphism such
that f ◦ h = h ◦ θ. Then

h
(
G[θ]

)
⊂ Fix(f) and h

(
G − Fix(θ)

)
⊂ S3 − Fix(f) .

Proof : By definition, all the vertices in Gθ map to Fix(f). Consider any edge between
such vertices. The homeomorphism f restricts to a homeomorphism which takes h of the
edge to itself and fixes its endpoints. Of course the restricted homeomorphism has finite
order, so by Lemma 2, h of the edge is in Fix(f). Now consider an edge whose endpoints
are exchanged. The homeomorphism f restricts to a homeomorphism of h of this edge
which exchanges the endpoints. By Lemma 2 again, f restricted to h of this edge has a
unique fixed point, x ∈ Fix(f). Extend h to all of g[θ] by sending the vertices in G[θ]

corresponding to these edges to the fixed points. This shows h(G[θ]) ⊂ Fix(f).
Next note that all the vertices of G − Fix(θ) map via h into S3 − Fix(f) since θ

moves all the vertices of G − Fix(θ). Now suppose h of some edge intersects Fix(f). If
one of the endpoints of this edge is mapped by h into Fix(f), then this edge is not in
S3 − Fix(f). Now suppose h of the edge intersects Fix(f) in some interior point. Since
h is an embedding, f must then map h of this edge into itself. If f fixes the endpoints of
h of this edge then by Lemma 2, f fixes the entire edge so this edge is in Gθ and hence
not in G − Fix(θ). If f exchanges the endpoints of h of this edge, then θ exchanges the
vertices at the ends of the edge, so such an edge is not in G − Fix(θ) either.

To use this theorem effectively, it will be good to have conditions on G (and not just
on h) which guarantee that the image of h must be rather complicated. We state them for
a general graph G but we will tend to apply them to Gθ or G[θ].

Proposition 5: If G has a vertex of valence at least 3, then there is no embedding of G
into S1.

Proposition 6: If G has a non–empty subgraph all of whose vertices have valence 2, then
there is no embedding of G into R1.

Also recall a theorem of Kuratoski.

Proposition 7: If G contains a subgraph H which is a subdivision of K5 or of K3,3, then
G has no embedding in S2. Equivalently, if G is non–planar, G has no embedding in S2.

Here are detailed conclusions which can be drawn in the presence of finite order
homeomorphisms whether they come from Flapan’s Theorem or not.
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Theorem 8: Let G be a graph such that there is at most one edge between any two
vertices and suppose G has a vertex of valence greater than 2. Let h:G → S3 be an
embedding. Let f :S3 → S3 be a finite order homeomorphism with f ◦ h = h ◦ θ. Finally,
suppose θ has order n.

a) If f preserves orientation it has order n. If f reverses orientation and n is even, f has
order n. Moreover, the following hold.

1) Suppose we are NOT in the case in which n = 2 and f reverses orientation. Then
every vertex of Gθ has valence ≤ 2 and if there is one component of Gθ which is
a circle, then this is all of G[θ]. If f reverses orientation then G[θ] consists of 0, 1
or 2 vertices and no edges.

2) If n = 2, if f reverses orientation and if G[θ] has at least 3 vertices or at least one
edge, then Gθ has a planar embedding and no component of G − Fix(θ) is left
invariant by θ.

b) If f reverses orientation and n is odd, f has order 2n. Moreover G has a planar
embedding. If n > 1 then Gθ is either empty or it consists of one or two vertices: it has
no edges. If a vertex is not fixed by the θ action, then its orbit has n vertices in it.

Proof : Consider F = f (n) which has finite order since f does. Since θn is the identity, F
fixes all of h(G). If F preserves orientation, then F is the identity since a vertex of G has
valence ≥ 3 so the fixed set of F can not be S1 by Proposition 5. This proves F is the
identity in the first two cases. If f reverses orientation and n is odd, F still fixes h(G) but
it reverses orientation so it is not the identity. Hence the fixed set of F is S2 since it is not
contained in S0. Hence F (2) is the identity and G has a planar embedding.

This shows the order of f is no bigger than we expect, but why is it perhaps not
smaller? Suppose f (r) were the identity with r properly dividing n. Then f (r) ◦ h = h ◦ θr

and θr is not the identity so f (r) does not even fix the image of h, much less all of S3.
Even in the last case f (2r) can not be the identity for r properly dividing n by the same
argument. But f (n) can not be the identity either in our last case because, as we have
already observed, f (n) reverses orientation.

To see part 1) of a), Gθ ⊂ Fix(f) by Theorem 4. If f preserves orientation, Fix(f)
is empty or S1 and the result follows. If f reverses orientation and n > 2, apply this last
remark to f (2) which has order n/2 > 1 and observe Gθ ⊂ Gθ2

. Since Fix(f (2)) is S1,
Fix(f) can not be S2, so if f reverses orientation, G[θ] ⊂ S0.

For part 2) of a) note Fix(f) is S0 or S2 and since Gθ ⊂ Fix(f), Fix(f) = S2. The
restriction Gθ ⊂ Fix(f) = S2 shows the planar embedding.

Next, let v ∈ G−Fix(θ) be a vertex and suppose v and f(v) lie in a single component
of G−Fix(θ). Then there is a path in h(G−Fix(θ)) from v to f(v) and by Lemma 3 the
path must cross the fixed set. But G − Fix(θ) ⊂ S3 − Fix(f) and this is a contradiction.
Hence v and f(v) always lie in different components of G− Fix(θ), so no components are
left invariant by θ.

To finish part b), let X ⊂ S3 be the fixed set of f (n). Note X is homeomorphic to S2.
Check that f(X) = X. Since f (n) is the identity on X, f acting on X has finite order and
we may think of h as an embedding G → X. Two dimensional Smith theory applies here.
Since n is odd and f has order n, f preserves orientation on X and Smith theory says the
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fixed set of this action is S0 since f is not the identity. This says θ must fix one or two
points since this set is a subset of S0.

Now, let r be odd and suppose θr is not the identity. The above argument shows θr

fixes one or two points and it clearly fixes all the points θ fixed. If θ fixes two points, θr

fixes the same two points. If θ fixes one but θr fixes two, let x be the point fixed by θr but
not by θ and let y be the point fixed by θ. Then x, y, θ(x), . . . , θr−1(x) are all points fixed
by θr. Since there are only x and y, θ(x) = x or θ(x) = y. Neither of these is possible.
Hence Gθ = Gθr

which forces all orbits to either have one element or n.

Remarks: The example of the tetrahedral embedding of K4 in the plane shows that the
last case can occur even with θ being the identity and hence having order 1.

Everything not forbidden by Theorem 8 can occur. You might like to think of some
examples.

Corollary 9: Let θ be an automorphism of G of order n > 1 and with Gθ = S1. Suppose
G and G − Fix(θ) �= ∅ are connected. Then there is no embedding h:G → R3 for which
there exists a finite order homeomorphism f :R3 → R3 such that f ◦ h = h ◦ θ.

Proof : Since G − Fix(θ) �=, G �= Gθ and θ is not the identity. If all vertices of G have
valence ≤ 2, then any edge–path (see the next section for a definition of edge–path) starting
in Gθ stays in Gθ so G is not connected. Hence there are vertices of valence > 2.

Let ĥ:G → S3 and f̂ :S3 → S3 be the results of adding the point at infinity to h and
f . Note f̂ has the same order as f and f̂ ◦ ĥ = ĥ ◦ θ and Theorem 8 applies to θ and f̂ .
Note that Fix(f̂) contains G[θ] and one additional point, the point at infinity.

Suppose first we are in case a). If n > 2 or f preserves orientation then Fix(f (2))
must be S1 and contain Gθ = S1 plus ∞, which can not happen. If n = 2 and f reverses
orientation, then G − Fix(θ) is disconnected. But we are assuming it is connected.

Hence we must be in case b) and n > 1. But then Gθ is a finite set of points which is
a contradiciton.

Three connected graphs.

Here are some results which will help us to show some graphs are 3 connected.
First of all, it is usually not too difficult to see that a graph is connected, but for a

proof, “just” show that there is an edge–path between any two vertices. An edge–path
between w0 and w1 is a sequence of edges, e0, . . . , en such that e0 is incident to w0, en

is incident to w1 and for each i, 0 ≤ i < n, ei and ei+1 share a vertex. Equivalently, one
can write down a sequence of vertices beginning with w0 and ending with w1 such that
any two adjacent vertices in the sequence have an edge between them. An edge–path is
embedded provided all the vertices in this sequence are different. If two vertices can be
joined by an edge–path, then they can be joined by an embedded edge–path. (If a vertex
repeats simple delete all the vertices between two occurrences of it and note we still have
an edge–path.) The length of an edge–path is the number of edges in it.
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Lemma 10: The number of edge–paths of length n in a graph is finite. If G has n vertices
then if two vertices can be joined by an edge–path they can be joined by an edge–path of
length ≤ n − 1.

Here is an algorithm to locate all the vertices which can be joined to v by an edge–
path. Given any vertex v, let S(v) denote the set of vertices at the other end of the edges
incident to v. Construct a non–decreasing sequence of set of vertices as follows. S0 = {v};
S1 = S0 ∪ S(v) = ∪

w∈S0
S(w); Si = ∪

w∈Si−1
S(w). As soon as Si = Si+1, Si contains all the

vertices in the same component as your initial v.

Lemma 11: Let G be a connected graph and let Gv ⊂ G be the subgraph with vertex v
and all edges incident to v removed. Let w(v)1, . . . , w(v)r denote the vertices at the other
end of the edges incident to v. Then Gv is connected if and only if w(v)i can be joined to
w(v)i+1 by an edge–path in Gv, 1 ≤ i < r.

Proposition 12: Let G1 and G2 be 3 connected subgraphs of G. Suppose G1∩G2 contains
at least 3 vertices. Then G1 ∪ G2 is 3 connected. If G1 ∩ G2 has 2 vertices and one edge
with one end in G1 and the other in G2, then G1 ∪ G2 union this edge is 3 connected. If
G1 ∩ G2 has 1 vertex and two edges each with one end in G1 and the other in G2, then
G1 ∪ G2 union these two edges is 3 connected. If there are three edges each with one end
in G1 and the other in G2, then G1 ∪ G2 union these three edges is 3 connected.

Proposition 13: A graph G is r connected if and only if each pair of vertices can be
joined by r embedded edge–paths which are distinct except for the initial and terminal
vetrices.

Proposition 14: Let G1 be a 3 connected subgraph of G. Let G2 have the same vertices
as G1. Then G2 is also 3 connected.

Proposition 15: Let G1 and G2 be 2 connected subgraphs of G. For each vertex of
G1 suppose there is at least one edge incident to that vertex whose other end is in G2.
Symmetrically, for each vertex of G2 suppose there is at least one edge incident to that
vertex whose other end is in G1. Then G1 ∪ G2 union these edges is 3 connected.

Given two graphs G1 and G2 the join of G1 and G2, written G1 ∗ G2 is the graph
whose vertex set is the disjoint union of the vertex sets of the Gi. The edges consist of the
edges of G1, the edges of G2 and one edge from each vertex of G1 to each vertex of G2.
As an example, if G1 and G2 are both graphs with three vertices and no edges, G1 ∗G2 is
K3,3.

Proposition 16: Suppose G2 has at least 3 vertices. If G1 has at least 3 vertices, G1 ∗G2

is 3 connected. If G1 has 2 vertices and G2 is conencted, G1 ∗G2 is 3 connected. If G1 has
1 vertex and G2 is 2 conencted, G1 ∗ G2 is 3 connected.

It follows from Proposition 16 that K3,3 is 3 connected. Clearly K3 is 2 connected
and Kn = Kn−1 ∗ {v}, where {v} is the graph with one vertex. By Proposition 16, Kn is
3 connected for n ≥ 4.
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We can now prove two more of Flapan’s results. Recall that if an embedding h:G →
R3 is achiral, then there must be an automorphism θ and an orientation reversing diffeo-
morphism f :R3 → R3 such that f ◦ h = h ◦ θ.

Theorem 17: If G has no planar embeddings and if h:G → R3 is an achiral embedding
with automorphism θ, then θ has even order.

Proof : As usual lately, let h:G → S3 and let f :S3 → S3 reverse orientation with f ◦ h =
h ◦ θ. Assume to be contrary that θ has odd order r. Then f (r) ◦ h = h ◦ θr = h and f (r)

still reverses orientation since r is odd.
Since G is non–planar, by Kuratoski’s theorem, Proposition 7, there is a graph H

which is either K3,3 or K5 and some subdivision, H ′, of it so that H ′ is a subgraph of G.
The embedding h restricts to an embedding of the subgraph H ′ which in turn yields an
embedding ĥ:H → S3 and f (r) ◦ ĥ = ĥ.

Since H is 3 connected, Theorem 1 says we can construct a new embedding h1 of
H in S3 and an orientation reversing, finite order homeomorphism f1 of S3 such that
f1 ◦ h1 = h1. We can now apply Theorem 8 to conclude that the fixed set of the identity,
which is H has a planar embedding, which is impossible. Hence θ must have even order.

Flapan’s Corollary 6.2, p.172, follows by applying Theorem 17 for θ the identity.
Corollary 6.4 on page 176 follows since no such graph has an even order automorphism.

A few last remarks

We conclude the semester with

Theorem 18: Any embedding of K4k+3, k > 0, is chiral.

Proof : If not, let θ be an automorphism exhibiting the achirality. By Theorem 17, if θ
has order n, n is even. Suppose n = 2� · r for r odd. Then the f (r) reverses orientation
and θr exhibits the achirality: hence we may as well assume n = 2k, k > 0. Consider θ
acting on the vertices. There are a1 orbits with 1 element, a2 orbits with 2 elements, and

a2i orbits with 2i elements. The total number of vertices is then
∞∑

i=1

2i · a2i which for us

is 4k + 3 = a1 + 2 · a2 + 4m. Moreover, G[θ] has a1 + a2 vertices since there is an edge
between any two vertices.

Since K4k+3 is 3 connected, by Theorem 1 there is an achiral embedding h:K4k+3 →
S3 and a finite order homeomorphism f :S3 → S3 such that f ◦ h = h ◦ θ.

Now apply Theorem 8. Since n is even we are in case a) and let us start by assuming
that k > 1 so we are in subcase 1) with f reversing orientation. Since G[θ] has 0, 1 or
2 vertices, it follows that a1 = a2 = 1. It further follows that f (2) preserves orientation
and Gθ2

has three vertices and all the edges between them that G has. In this case Gθ2

is a triangle, a.k.a S1. Hence f (2k−1) has order 2 and Gθ2k−1

is S1. But G[θ2k−1] contains
isolated vertices. This contradicts subcase 1) of a).

Could we be in subcase 2) of case a)? Since we can not be in subcase 1) and since
K4k+3 has at least 6 vertices, G[θ] has at least 3 vertices. Since Gθ is planar, θ can
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fix at most 4 vertices since if it fixed 5 it would fix a K5 which is not planar. Hence
K4k+3 − Fix(θ) has at least 3 vertices and since it has an even number of vertices, it
has at least 4. But this forces K4k+3 − Fix(θ) to be connected: if x and y are vertices
in K4k+3 − Fix(θ), there is an edge between them in K4k+3 and hence an edge between
them in K4k+3 − Fix(θ) unless f(x) = y. But since there are at least 4 vertices, there
is a vertex z in K4k+3 − Fix(θ) which is neither x nor f(x) and so there is an edge in
K4k+3 − Fix(θ) from x to z and from z to f(x), so K4k+3 − Fix(θ) is connected. This
contradicts the conclusion of subcase 2) since K4k+3 −Fix(θ) is supposed to have an even
number of components.

Flapan also shows that Kn does have achiral embeddings if n is not of the form 4k+3,
k > 0.
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