Finite Order Equivalences of Embedded Graphs

L. R. Taylor

Fall 2002
We discuss a notion of equivalence which is a bit different than the rigid equivalence we discussed earlier but is closely related to it. We will see that this relation, called finite order equivalence, is just what we need to exploit a big theorem of Flapan.

We need to explain two theorems from 3 manifold topology. The three manifold that is relevant to this discussion is S^{3} which can be thought of in several ways. One way is that it is just \mathbf{R}^{3} union a point ∞. Analogous examples which are easier to visualize are $\mathbf{R}^{1} \cup \infty$ is the circle S^{1} and $\mathbf{R}^{2} \cup \infty$ is the two sphere S^{2}. All three of these examples can also be described as the unit sphere in Euclidean space of one higher dimension: $S^{1}=\left\{x^{2}+y^{2}=1 \subset \mathbf{R}^{2}\right\} ; S^{2}=\left\{x^{2}+y^{2}+z^{2}=1 \subset \mathbf{R}^{3}\right\} ; S^{3}=\left\{x^{2}+y^{2}+z^{2}+t^{2}=1 \subset \mathbf{R}^{4}\right\}$.

Our first result is that any diffeomorphism $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ extends to a homeomorphism $\hat{f}: S^{3} \rightarrow S^{3}$ defined as f on any point in \mathbf{R}^{3} and $\hat{f}(\infty)=\infty$. If f is the identity so is \hat{f}. Since $\mathbf{R}^{3} \subset S^{3}$ we can also think of h as an embedding $\hat{h}: G \rightarrow S^{3}$.

For notation, if f is a function from S^{3} to itself, let $f^{(n)}$ denote the composition of f with itself n times. If $n=0$ we define $f^{(0)}$ to be the identity and if f is a homeomorphism, we define $f^{(-n)}$ to be f^{-1} composed with itself n times. A homeomorphism $f: S^{3} \rightarrow S^{3}$ has finite order provided that $f^{(n)}=f^{(0)}$ for some integer n.

We say two automorphism of an embedded graph $h: G \rightarrow S^{3}$, say θ_{1} and θ_{2}, are foequivalent provided there exists a homeomorphism f of finite order such that $f \circ h \circ \theta_{1}=$ $h \circ \theta_{2}$.

The notion of fo-equivalence has some points in common with rigid equivalence and some points of divergence. Notice first that if θ_{1} and θ_{2} are rigidly equivalent via r, then r has finite order and so \hat{r} shows that θ_{1} and θ_{2} are f_{0}-equivalent. We could discuss a similar notion of fo-equivalence in which we replaced S^{3} by \mathbf{R}^{3} and again the \mathbf{R}^{3} version would imply the S^{3} version. We do not bother since Flapan's theorem only applies to the S^{3} version and it is not true that fo-equivalent θ can necessarily be made equivalent by a finite order diffeomorphism of \mathbf{R}^{3}.

Perhaps the biggest difference between fo and rigid equivalence is that the set of θ fo-equivalent to the identity map of G do not form a subgroup. If θ is $f o-$ equivalent to the identity, then so is θ^{r} for any r, but there is no obvious reason why $\theta_{1} \circ \theta_{2}$ should be fo-equivalent to the identity even if both θ_{1} and θ_{2} are.

Before stating Flapan's theorem, we need a definition. Flapan calls a graph 3connected if we can remove any 2 vertices from G, along with the edges incident to those vertices, and always have only one component.

Theorem 1:(Flapan Theorem 6.1 p. 165) Let $h: G \rightarrow S^{3}$ be an embedding of a 3connected graph. Let $f: S^{3} \rightarrow S^{3}$ be a homeomorphism and θ an automorphism of G such that $f \circ h=h \circ \theta$. Equivalently, let $\theta \in \operatorname{Aut}_{h}(G)$. Then there exists a homeomorphism of finite order, $f_{1}: S^{3} \rightarrow S^{3}$ and a new embedding $h_{1}: G \rightarrow S^{3}$ such that $f_{1} \circ h_{1}=h_{1} \circ \theta$. If f preserves orientation, then f_{1} can be chosen to preserve orientation and if f reverses orientation f_{1} can be chosen to reverse orientation.

Remark: We have no control over the f_{1} or the h_{1}, but notice that the θ is the same.

Flapan's result is very powerful because of some theorems of P. A. Smith which say that the fixed point set of a finite order homeomorphism of S^{3} is very restricted. It can be empty; it can be two points, or a circle $\left(S^{1}\right)$, or an S^{2} or an S^{3}. Note two points is the solution set to $x^{2}=1$ in \mathbf{R}^{1} so we often write S^{0} instead of two points. This way we can state Smith's theorem as: the fixed point set of a finite order homeomorphism of S^{3} is either empty or an S^{r} for $r=0,1,2$ or 3 . Smith's theorem actually has a refinement of some relevance to us which says that the fixed set of f is empty, S^{1} or S^{3} if f is orientation preserving and S^{0} or S^{2} if f reverses orientation. Note that if the fixed set of an orientation reversing f is S^{2}, then $f^{(2)}$ is the identity since the fixed set of f is fixed by $f^{(2)}$ so its fixed set can only be S^{3}. There is a version for S^{2} as well, which says that if f preserves orientation and has finite order, the fixed set is S^{0}; if f reverses orientation f has no fixed points or else S^{1} is the fixed set.

Assume that there is at most one edge between any two vertices in G. If θ is an automorphism of G, let G^{θ} be the subgraph of G consisting of all vertices v such that $\theta(v)=v$ together with all edges in G both of whose endpoints are vertices of G^{θ}. This is not the whole story concerning what θ fixes. If θ has even order, there may be edges whose two endpoints are exchanged by θ.

Define $G^{[\theta]}$ to be G^{θ} plus one isolated vertex for each edge whose endpoints are interchanged. The number of vertices of $G^{[\theta]}$ can be worked out from the structure of the orbits of θ acting on the vertices of G. The number of vertices of G^{θ} is the number of orbits of this action with 1 element: the number of vertices of $G^{[\theta]}$ is at most the number of orbits with one or two elements. The difference between the number of vertices in $G^{[\theta]}$ and the number of vertices of G^{θ} is precisely the number of orbits with two vertices for which these two vertices are joined by an edge. Notice that if there are orbits with two elements, θ must have even order. If θ has order 2 and if there is at most one edge between any two vertices, then there are orbits with 2 vertices since every orbit has one or two vertices and if they all had one, θ would be the identity.

Define $G-\operatorname{Fix}(\theta)$ to be the subgraph of G whose vertices are all the vertices of G which are not in G^{θ} : an edge of G is in $G-\operatorname{Fix}(\theta)$ provided neither incident vertex is in G^{θ} nor are the two incident vertices exchanged by θ.

Because of the next two lemmas, the fixed set of f and $G^{[\theta]}$ are related. If f is a finite order homeomorphism of S^{3}, let Fix (f) denote the subset of all points $x \in S^{3}$ with $f(x)=x$.

Lemma 2: Let f be a homeomorphism from $[a, b]$ to itself. Suppose f has finite order. If f preserves orientation $(f(a)=a)$, then f is the identity. If f reverses orientation $(f(a)=b)$ then f is an involution and there is a unique point $x \in(a, b)$ which is fixed by f. Let $g:[a, x] \rightarrow[x, b]$ be the restriction of f. Then f restricted to $[x, b]$ is g^{-1}.

A theorem from advanced topology called the Jordan-Brower separation theorem says that if you have an S^{n-1} embedded in any way in S^{n}, then $S^{n}-S^{n-1}$ divides into two pieces and any path from one piece to the other must cross the S^{2}. Applied to our situation it says

Lemma 3: Let $f: S^{3} \rightarrow S^{3}$ have finite order with Fix (f) homeomorphic to S^{2}. Let x be any point in $S^{3}-F i x(f)$. Then any path from x to $f(x)$ must cross the fixed set. If x and y can be joined by a path in $S^{3}-F i x(f)$ then any path from x to $f(y)$ must cross the fixed set.

Theorem 4: Suppose there is at most one edge between any two vertices of G. Let $h: G \rightarrow S^{3}$ be an embedding and let $f: S^{3} \rightarrow S^{3}$ be a finite order homeomorphism such that $f \circ h=h \circ \theta$. Then

$$
h\left(G^{[\theta]}\right) \subset F i x(f) \quad \text { and } \quad h(G-F i x(\theta)) \subset S^{3}-F i x(f) .
$$

Proof: By definition, all the vertices in G^{θ} map to $F i x(f)$. Consider any edge between such vertices. The homeomorphism f restricts to a homeomorphism which takes h of the edge to itself and fixes its endpoints. Of course the restricted homeomorphism has finite order, so by Lemma 2, h of the edge is in $\operatorname{Fix}(f)$. Now consider an edge whose endpoints are exchanged. The homeomorphism f restricts to a homeomorphism of h of this edge which exchanges the endpoints. By Lemma 2 again, f restricted to h of this edge has a unique fixed point, $x \in F i x(f)$. Extend h to all of $g^{[\theta]}$ by sending the vertices in $G^{[\theta]}$ corresponding to these edges to the fixed points. This shows $h\left(G^{[\theta]}\right) \subset F i x(f)$.

Next note that all the vertices of $G-\operatorname{Fix}(\theta)$ map via h into $S^{3}-F i x(f)$ since θ moves all the vertices of $G-F i x(\theta)$. Now suppose h of some edge intersects $F i x(f)$. If one of the endpoints of this edge is mapped by h into $\operatorname{Fix}(f)$, then this edge is not in $S^{3}-F i x(f)$. Now suppose h of the edge intersects $F i x(f)$ in some interior point. Since h is an embedding, f must then map h of this edge into itself. If f fixes the endpoints of h of this edge then by Lemma 2, f fixes the entire edge so this edge is in G^{θ} and hence not in $G-F i x(\theta)$. If f exchanges the endpoints of h of this edge, then θ exchanges the vertices at the ends of the edge, so such an edge is not in $G-F i x(\theta)$ either.

To use this theorem effectively, it will be good to have conditions on G (and not just on h) which guarantee that the image of h must be rather complicated. We state them for a general graph G but we will tend to apply them to G^{θ} or $G^{[\theta]}$.

Proposition 5: If G has a vertex of valence at least 3, then there is no embedding of G into S^{1}.

Proposition 6: If G has a non-empty subgraph all of whose vertices have valence 2 , then there is no embedding of G into \mathbf{R}^{1}.

Also recall a theorem of Kuratoski.
Proposition 7: If G contains a subgraph H which is a subdivision of K_{5} or of $K_{3,3}$, then G has no embedding in S^{2}. Equivalently, if G is non-planar, G has no embedding in S^{2}.

Here are detailed conclusions which can be drawn in the presence of finite order homeomorphisms whether they come from Flapan's Theorem or not.

Theorem 8: Let G be a graph such that there is at most one edge between any two vertices and suppose G has a vertex of valence greater than 2. Let $h: G \rightarrow S^{3}$ be an embedding. Let $f: S^{3} \rightarrow S^{3}$ be a finite order homeomorphism with $f \circ h=h \circ \theta$. Finally, suppose θ has order n.
a) If f preserves orientation it has order n. If f reverses orientation and n is even, f has order n. Moreover, the following hold.

1) Suppose we are NOT in the case in which $n=2$ and f reverses orientation. Then every vertex of G^{θ} has valence ≤ 2 and if there is one component of G^{θ} which is a circle, then this is all of $G^{[\theta]}$. If f reverses orientation then $G^{[\theta]}$ consists of 0,1 or 2 vertices and no edges.
2) If $n=2$, if f reverses orientation and if $G^{[\theta]}$ has at least 3 vertices or at least one edge, then G^{θ} has a planar embedding and no component of $G-F i x(\theta)$ is left invariant by θ.
b) If f reverses orientation and n is odd, f has order $2 n$. Moreover G has a planar embedding. If $n>1$ then G^{θ} is either empty or it consists of one or two vertices: it has no edges. If a vertex is not fixed by the θ action, then its orbit has n vertices in it.

Proof: Consider $F=f^{(n)}$ which has finite order since f does. Since θ^{n} is the identity, F fixes all of $h(G)$. If F preserves orientation, then F is the identity since a vertex of G has valence ≥ 3 so the fixed set of F can not be S^{1} by Proposition 5 . This proves F is the identity in the first two cases. If f reverses orientation and n is odd, F still fixes $h(G)$ but it reverses orientation so it is not the identity. Hence the fixed set of F is S^{2} since it is not contained in S^{0}. Hence $F^{(2)}$ is the identity and G has a planar embedding.

This shows the order of f is no bigger than we expect, but why is it perhaps not smaller? Suppose $f^{(r)}$ were the identity with r properly dividing n. Then $f^{(r)} \circ h=h \circ \theta^{r}$ and θ^{r} is not the identity so $f^{(r)}$ does not even fix the image of h, much less all of S^{3}. Even in the last case $f^{(2 r)}$ can not be the identity for r properly dividing n by the same argument. But $f^{(n)}$ can not be the identity either in our last case because, as we have already observed, $f^{(n)}$ reverses orientation.

To see part 1) of a), $G^{\theta} \subset F i x(f)$ by Theorem 4. If f preserves orientation, Fix (f) is empty or S^{1} and the result follows. If f reverses orientation and $n>2$, apply this last remark to $f^{(2)}$ which has order $n / 2>1$ and observe $G^{\theta} \subset G^{\theta^{2}}$. Since Fix $\left(f^{(2)}\right)$ is S^{1}, Fix (f) can not be S^{2}, so if f reverses orientation, $G^{[\theta]} \subset S^{0}$.

For part 2) of a) note $F i x(f)$ is S^{0} or S^{2} and since $G^{\theta} \subset F i x(f)$, $F i x(f)=S^{2}$. The restriction $G^{\theta} \subset F i x(f)=S^{2}$ shows the planar embedding.

Next, let $v \in G-F i x(\theta)$ be a vertex and suppose v and $f(v)$ lie in a single component of $G-F i x(\theta)$. Then there is a path in $h(G-F i x(\theta))$ from v to $f(v)$ and by Lemma 3 the path must cross the fixed set. But $G-F i x(\theta) \subset S^{3}-F i x(f)$ and this is a contradiction. Hence v and $f(v)$ always lie in different components of $G-F i x(\theta)$, so no components are left invariant by θ.

To finish part b), let $X \subset S^{3}$ be the fixed set of $f^{(n)}$. Note X is homeomorphic to S^{2}. Check that $f(X)=X$. Since $f^{(n)}$ is the identity on X, f acting on X has finite order and we may think of h as an embedding $G \rightarrow X$. Two dimensional Smith theory applies here. Since n is odd and f has order n, f preserves orientation on X and Smith theory says the
fixed set of this action is S^{0} since f is not the identity. This says θ must fix one or two points since this set is a subset of S^{0}.

Now, let r be odd and suppose θ^{r} is not the identity. The above argument shows θ^{r} fixes one or two points and it clearly fixes all the points θ fixed. If θ fixes two points, θ^{r} fixes the same two points. If θ fixes one but θ^{r} fixes two, let x be the point fixed by θ^{r} but not by θ and let y be the point fixed by θ. Then $x, y, \theta(x), \ldots, \theta^{r-1}(x)$ are all points fixed by θ^{r}. Since there are only x and $y, \theta(x)=x$ or $\theta(x)=y$. Neither of these is possible. Hence $G^{\theta}=G^{\theta^{r}}$ which forces all orbits to either have one element or n.

Remarks: The example of the tetrahedral embedding of K_{4} in the plane shows that the last case can occur even with θ being the identity and hence having order 1.

Everything not forbidden by Theorem 8 can occur. You might like to think of some examples.

Corollary 9: Let θ be an automorphism of G of order $n>1$ and with $G^{\theta}=S^{1}$. Suppose G and $G-\operatorname{Fix}(\theta) \neq \emptyset$ are connected. Then there is no embedding $h: G \rightarrow \mathbf{R}^{3}$ for which there exists a finite order homeomorphism $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ such that $f \circ h=h \circ \theta$.

Proof: Since $G-\operatorname{Fix}(\theta) \neq, G \neq G^{\theta}$ and θ is not the identity. If all vertices of G have valence ≤ 2, then any edge-path (see the next section for a definition of edge-path) starting in G^{θ} stays in G^{θ} so G is not connected. Hence there are vertices of valence >2.

Let $\hat{h}: G \rightarrow S^{3}$ and $\hat{f}: S^{3} \rightarrow S^{3}$ be the results of adding the point at infinity to h and f. Note \hat{f} has the same order as f and $\hat{f} \circ \hat{h}=\hat{h} \circ \theta$ and Theorem 8 applies to θ and \hat{f}. Note that $\operatorname{Fix}(\hat{f})$ contains $G^{[\theta]}$ and one additional point, the point at infinity.

Suppose first we are in case a). If $n>2$ or f preserves orientation then Fix $\left(f^{(2)}\right)$ must be S^{1} and contain $G^{\theta}=S^{1}$ plus ∞, which can not happen. If $n=2$ and f reverses orientation, then $G-\operatorname{Fix}(\theta)$ is disconnected. But we are assuming it is connected.

Hence we must be in case b) and $n>1$. But then G^{θ} is a finite set of points which is a contradiciton. .

Three connected graphs.

Here are some results which will help us to show some graphs are 3 connected.
First of all, it is usually not too difficult to see that a graph is connected, but for a proof, "just" show that there is an edge-path between any two vertices. An edge-path between w_{0} and w_{1} is a sequence of edges, e_{0}, \ldots, e_{n} such that e_{0} is incident to w_{0}, e_{n} is incident to w_{1} and for each $i, 0 \leq i<n, e_{i}$ and e_{i+1} share a vertex. Equivalently, one can write down a sequence of vertices beginning with w_{0} and ending with w_{1} such that any two adjacent vertices in the sequence have an edge between them. An edge-path is embedded provided all the vertices in this sequence are different. If two vertices can be joined by an edge-path, then they can be joined by an embedded edge-path. (If a vertex repeats simple delete all the vertices between two occurrences of it and note we still have an edge-path.) The length of an edge-path is the number of edges in it.

Lemma 10: The number of edge-paths of length n in a graph is finite. If G has n vertices then if two vertices can be joined by an edge-path they can be joined by an edge-path of length $\leq n-1$.

Here is an algorithm to locate all the vertices which can be joined to v by an edgepath. Given any vertex v, let $\mathcal{S}(v)$ denote the set of vertices at the other end of the edges incident to v. Construct a non-decreasing sequence of set of vertices as follows. $S_{0}=\{v\}$; $S_{1}=S_{0} \cup \mathcal{S}(v)=\underset{w \in S_{0}}{\cup} \mathcal{S}(w) ; S_{i}=\underset{w \in S_{i-1}}{\cup} \mathcal{S}(w)$. As soon as $S_{i}=S_{i+1}, S_{i}$ contains all the vertices in the same component as your initial v.
Lemma 11: Let G be a connected graph and let $G_{v} \subset G$ be the subgraph with vertex v and all edges incident to v removed. Let $w(v)_{1}, \ldots, w(v)_{r}$ denote the vertices at the other end of the edges incident to v. Then G_{v} is connected if and only if $w(v)_{i}$ can be joined to $w(v)_{i+1}$ by an edge-path in $G_{v}, 1 \leq i<r$.

Proposition 12: Let G_{1} and G_{2} be 3 connected subgraphs of G. Suppose $G_{1} \cap G_{2}$ contains at least 3 vertices. Then $G_{1} \cup G_{2}$ is 3 connected. If $G_{1} \cap G_{2}$ has 2 vertices and one edge with one end in G_{1} and the other in G_{2}, then $G_{1} \cup G_{2}$ union this edge is 3 connected. If $G_{1} \cap G_{2}$ has 1 vertex and two edges each with one end in G_{1} and the other in G_{2}, then $G_{1} \cup G_{2}$ union these two edges is 3 connected. If there are three edges each with one end in G_{1} and the other in G_{2}, then $G_{1} \cup G_{2}$ union these three edges is 3 connected.

Proposition 13: A graph G is r connected if and only if each pair of vertices can be joined by r embedded edge-paths which are distinct except for the initial and terminal vetrices.

Proposition 14: Let G_{1} be a 3 connected subgraph of G. Let G_{2} have the same vertices as G_{1}. Then G_{2} is also 3 connected.

Proposition 15: Let G_{1} and G_{2} be 2 connected subgraphs of G. For each vertex of G_{1} suppose there is at least one edge incident to that vertex whose other end is in G_{2}. Symmetrically, for each vertex of G_{2} suppose there is at least one edge incident to that vertex whose other end is in G_{1}. Then $G_{1} \cup G_{2}$ union these edges is 3 connected.

Given two graphs G_{1} and G_{2} the join of G_{1} and G_{2}, written $G_{1} * G_{2}$ is the graph whose vertex set is the disjoint union of the vertex sets of the G_{i}. The edges consist of the edges of G_{1}, the edges of G_{2} and one edge from each vertex of G_{1} to each vertex of G_{2}. As an example, if G_{1} and G_{2} are both graphs with three vertices and no edges, $G_{1} * G_{2}$ is $K_{3,3}$.

Proposition 16: Suppose G_{2} has at least 3 vertices. If G_{1} has at least 3 vertices, $G_{1} * G_{2}$ is 3 connected. If G_{1} has 2 vertices and G_{2} is conencted, $G_{1} * G_{2}$ is 3 connected. If G_{1} has 1 vertex and G_{2} is 2 conencted, $G_{1} * G_{2}$ is 3 connected.

It follows from Proposition 16 that $K_{3,3}$ is 3 connected. Clearly K_{3} is 2 connected and $K_{n}=K_{n-1} *\{v\}$, where $\{v\}$ is the graph with one vertex. By Proposition $16, K_{n}$ is 3 connected for $n \geq 4$.

We can now prove two more of Flapan's results. Recall that if an embedding $h: G \rightarrow$ \mathbf{R}^{3} is achiral, then there must be an automorphism θ and an orientation reversing diffeomorphism $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ such that $f \circ h=h \circ \theta$.
Theorem 17: If G has no planar embeddings and if $h: G \rightarrow \mathbf{R}^{3}$ is an achiral embedding with automorphism θ, then θ has even order.

Proof: As usual lately, let $h: G \rightarrow S^{3}$ and let $f: S^{3} \rightarrow S^{3}$ reverse orientation with $f \circ h=$ $h \circ \theta$. Assume to be contrary that θ has odd order r. Then $f^{(r)} \circ h=h \circ \theta^{r}=h$ and $f^{(r)}$ still reverses orientation since r is odd.

Since G is non-planar, by Kuratoski's theorem, Proposition 7, there is a graph H which is either $K_{3,3}$ or K_{5} and some subdivision, H^{\prime}, of it so that H^{\prime} is a subgraph of G. The embedding h restricts to an embedding of the subgraph H^{\prime} which in turn yields an embedding $\hat{h}: H \rightarrow S^{3}$ and $f^{(r)} \circ \hat{h}=\hat{h}$.

Since H is 3 connected, Theorem 1 says we can construct a new embedding h_{1} of H in S^{3} and an orientation reversing, finite order homeomorphism f_{1} of S^{3} such that $f_{1} \circ h_{1}=h_{1}$. We can now apply Theorem 8 to conclude that the fixed set of the identity, which is H has a planar embedding, which is impossible. Hence θ must have even order. ■

Flapan's Corollary 6.2, p.172, follows by applying Theorem 17 for θ the identity. Corollary 6.4 on page 176 follows since no such graph has an even order automorphism.

A few last remarks

We conclude the semester with
Theorem 18: Any embedding of $K_{4 k+3}, k>0$, is chiral.
Proof: If not, let θ be an automorphism exhibiting the achirality. By Theorem 17, if θ has order n, n is even. Suppose $n=2^{\ell} \cdot r$ for r odd. Then the $f^{(r)}$ reverses orientation and θ^{r} exhibits the achirality: hence we may as well assume $n=2^{k}, k>0$. Consider θ acting on the vertices. There are a_{1} orbits with 1 element, a_{2} orbits with 2 elements, and $a_{2^{i}}$ orbits with 2^{i} elements. The total number of vertices is then $\sum_{i=1}^{\infty} 2^{i} \cdot a_{2^{i}}$ which for us is $4 k+3=a_{1}+2 \cdot a_{2}+4 m$. Moreover, $G^{[\theta]}$ has $a_{1}+a_{2}$ vertices since there is an edge between any two vertices.

Since $K_{4 k+3}$ is 3 connected, by Theorem 1 there is an achiral embedding $h: K_{4 k+3} \rightarrow$ S^{3} and a finite order homeomorphism $f: S^{3} \rightarrow S^{3}$ such that $f \circ h=h \circ \theta$.

Now apply Theorem 8. Since n is even we are in case a) and let us start by assuming that $k>1$ so we are in subcase 1) with f reversing orientation. Since $G^{[\theta]}$ has 0,1 or 2 vertices, it follows that $a_{1}=a_{2}=1$. It further follows that $f^{(2)}$ preserves orientation and $G^{\theta^{2}}$ has three vertices and all the edges between them that G has. In this case $G^{\theta^{2}}$ is a triangle, a.k.a S^{1}. Hence $f^{\left(2^{k-1}\right)}$ has order 2 and $G^{\theta^{2^{k-1}}}$ is S^{1}. But $G^{[} \theta^{\left.2^{k-1}\right]}$ contains isolated vertices. This contradicts subcase 1) of a).

Could we be in subcase 2) of case a)? Since we can not be in subcase 1) and since $K_{4 k+3}$ has at least 6 vertices, $G^{[\theta]}$ has at least 3 vertices. Since G^{θ} is planar, θ can
fix at most 4 vertices since if it fixed 5 it would fix a K_{5} which is not planar. Hence $K_{4 k+3}-F i x(\theta)$ has at least 3 vertices and since it has an even number of vertices, it has at least 4. But this forces $K_{4 k+3}-F i x(\theta)$ to be connected: if x and y are vertices in $K_{4 k+3}-F i x(\theta)$, there is an edge between them in $K_{4 k+3}$ and hence an edge between them in $K_{4 k+3}-\operatorname{Fix}(\theta)$ unless $f(x)=y$. But since there are at least 4 vertices, there is a vertex z in $K_{4 k+3}-F i x(\theta)$ which is neither x nor $f(x)$ and so there is an edge in $K_{4 k+3}-F i x(\theta)$ from x to z and from z to $f(x)$, so $K_{4 k+3}-F i x(\theta)$ is connected. This contradicts the conclusion of subcase 2) since $K_{4 k+3}-F i x(\theta)$ is supposed to have an even number of components.

Flapan also shows that K_{n} does have achiral embeddings if n is not of the form $4 k+3$, $k>0$.

