
Takehome Final for Math 468

Solutions

1. We are given a continuous function f : [a, b] → [a, b] with f(a) = a, f(b) = b and f (n) being
the identity for some integer n. Out goal is to prove that f is the identity. (You were
actually told that f was a homeomorphism, but this is redundant since if f has order n,
the inverse of f is f (n−1).)

Now f is the identity if and only if f(x) = x for all x ∈ [a, b] so it behoves us to study
the subset C =

{
x ∈ [a, b]

∣
∣f(x) = x

}
and its compliment A =

{
x ∈ [a, b]

∣
∣f(x) �= x

}
.

It will also be good to divide A into two disjoint sets, A+ =
{
x ∈ [a, b]

∣
∣f(x) > x

}
and

A− =
{
x ∈ [a, b]

∣
∣f(x) < x

}
.

Since f is continuous, the set C is closed. Proof: if xn is a sequence in C converging to
x then x ∈ [a, b] (because [a, b] is closed) and f(x) = f(limn→∞ xn) = limn→∞ f(xn) =
limn→∞ xn = x. But this means x ∈ C, so C is closed.

The set C ∪ A+ =
{
x ∈ [a, b]

∣
∣f(x) ≥ x

}
is also closed. Proof: if xn is a sequence in

C ∪ A+ converging to x then x ∈ [a, b] ([a, b] is closed) and f(x) = f(limn→∞ xn) =
limn→∞ f(xn) ≥ limn→∞ xn = x. But this means x ∈ C ∪A+, so C ∪A+ is closed. Hence
A− = [a, b] − (C ∪ A+) is open. A similar argument shows A+ is open.

One of the hints then says that if A+ is not empty, A+ = (x0, x1) ∪ Ã, where Ã is open
and the union is disjoint. Since the union is disjoint, x0 and x1 are not in A+. Proof:
If x0 ∈ A+ then x0 ∈ (y0, y1) ⊂ Ã for some open interval. (The hint again.) But then
(y0, y1) ∩ (x0, x1) is not empty. A similar contradiction shows x1 /∈ A+.

But since C ∪A+ is closed, x0 and x1 must be in C ∪A+ and therefore they must be in C.
In other words f(x0) = x0 and f(x1) = x1. Since f is continuous, f assumes a maximum
value, say M at a point y ∈ [x0, x1]. Since f(x1) = x1, M ≥ x1. If M > x1, then by the
Intermediate Value Theorem applied to f on the interval [x0, y], there is some y1 ∈ [x0, y]
such that f(y1) = x1 so f is not one–to–one. Hence M = x1 and for any y ∈ [x0, x1),
f(y) < x1. A similar argument shows x0 is the minimum value assumed by f on [x0, x1]
so f restricts to a finite order homeomorphism f : [x0, x1] → [x0, x1] and moreover f takes
(x0, x1) into (x0, x1).

Pick any point y ∈ (x0, x1). Then f(y) ∈ (x0, x1) and y < f(y). Applying f to f(y)
shows f(y) < f

(
f(y)

)
= f (2)(y) and hence y < f (2)(y) and f (2)(y) ∈ (x0, x1). By

induction, if y < f (n−1)(y) and f (n−1)(y) ∈ (x0, x1), then applying f to f (n−1)(y) shows
f (n−1)(y) < f

(
f (n−1)(y)

)
= f (n)(y) and f

(
f (n−1)(y)

)
∈ (x0, x1). Hence y < f (n)(y) and

f (n)(y) ∈ (x0, x1). But for some n, f (n)(y) = y and this is a contradiction. Hence A+ = ∅.

A similar argument shows A− = ∅. Therefore C = [a, b]− (A+∪A−) = [a, b] which is what
we set out to prove.
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2. Here the problem is to show that you can not embed three intervals into the real line so
that their initial points all go to the same value but this is the only common point. More
elaborately, we have three intervals Ii = [0, 1] i = 1, 2 and 3 and three one to one maps
fi: [0, 1] → (−∞,∞) such that f1(0) = f2(0) = f3(0) = a and if fi(x) = fj(y) for i �= j
then x = y = 0. Moreover, each fi is an embedding although all we will need of this
hypothesis is that fi(1) �= fi(0) for all three i. Let xi = fi(1) and note that none of the xi

are equal to a.

By hypothesis, the three xi are distinct. There are two cases.

Case 1. At least two of the xi are bigger than a.

Case 2. Otherwise at least two of the xi are less than a.

In case 1, we can renumber the intervals and f ’s if necessary so that x1 and x2 are greater
than a. Since x1 �= x2 we can also renumber so that x1 < x2. Now f2(0) = a and f2(1) = x2

so by the Intermediate Value Theorem there is some t ∈ [0, 1] such that f2(t) = x1 = f1(1)
and this is a contradiction.

A similar argument shows case 2 can not happen either.

3. The automorphism group of the graph K6 is the symmetric group on 6 elements, namely
the vertices. The maximal sublinks determine and are determined by a pair of subsets of
{1, 2, 3, 4, 5, 6}, each subset having 3 elements (so there are 1

2 ·
(
6
2

)
= 10 of them). Any

element in the symmetric group acts on the set of links: if θ is the permutation and
L =

{
{x1, x2, x3}, {x4, x5, x6}

}
is the maximal sublink then

θ(L) =
{
{θ(x1), θ(x2), θ(x3)}, {θ(x4), θ(x5), θ(x6)}

}
.

The first step in working this problem is to solve two cases of a general combinatorial
problem: given the symmetric group on a set, how do the elements of it act on the set of
pairs of three–element subsets. For us it will be sufficient to work out the orbit structure
of this action for any element of order 5 and any element of order 3. Notice that this part
of the problem has nothing to do with any embedding of the graph K6.

Here are some useful general remarks. Suppose that θ fixes L, so L = θ(L). For notation,
let {x1, x2, x3} = S1 and {x4, x5, x6} = S2 so L =

{
S1, S2

}
. Look at θ(x1): either

θ(x1) ∈ S1 or θ(x1) ∈ S2 and if θ(x1) ∈ Si, θ(x2) and θ(x3) ∈ Si as well. Furthermore,
θ(x4), θ(x5) and θ(x6) are all in the other Sj . So if θ(x1) ∈ S2, then θ2(x1) ∈ S1. If
additionally θ has order 2r + 1, then θ(x1) /∈ S2 since θ2r(x1) ∈ S1 so θ2r+1(x1) would be
in S2 but since θ2r+1 is the identity, θ2r+1(x1) = x1 would also be in S1. Hence odd order
permutations that fix an L also fix the S1 and the S2.

Just to be pedantic, note that we say θ fixes a subset provided θ takes each element in
the subset to another element in the subset: θ need not fix every element in the subset.
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Hence if θ fixes S1 then θ(x1) = x1, x2 or x3. If θ(x1) = x1, then θ(x2) = x2 and θ fixes
each element of S1 or else θ(x2) = x3. But then θ2(x2) = x2 and if θ has odd order this is
again a contradiction. So if θ has odd order and fixes S1, either θ fixes every element of
S1 or θ(x1) �= x1 and θ3 fixes every element of S1. Of course there is a similar analysis for
θ acting on S2.

We do a θ of order 5 first. We claim any such θ fixes exactly one element of {1, 2, 3, 4, 5, 6}.
This is a baby version of the main argument. Look at the orbits of this action. Since 5
is prime, orbits have either 1 or 5 elements. In our case we have 6 elements so we either
have 1 one–element orbit and 1 five–element orbit or we have 6 one–element orbits. But 6
one–element orbits means that θ is the identity whereas we assumed it had order 5.

Now suppose θ(L) = L. Since 5 is odd, θ(Si) = Si. Since θ3 fixes each element of Si, so
does θ6. But θ6 = θ so θ fixes all six elements of {1, 2, 3, 4, 5, 6}, contradiciton. Hence θ
fixes no sublink so all the orbits must have 5 elements since 5 is a prime. Therefore there
are 2 five–element orbits.

Now we analyze the case(s) in which θ has order 3. Since 3 is also prime, orbits either
have one element or three. Hence there are two types of permutations in the symmetric
group on six elements: those which have 3 one–element orbits and 1 three–element orbit
for the action of θ on {1, 2, 3, 4, 5, 6} and those which have 2 three–element orbits. (Again,
just like for 5, 6 one–element orbits means you have the identity.)

Three is odd so in this case too, θ(Si) = Si if θ fixes L = {S1, S2}. Again either θ fixes
each element in Si or fixes none, but it can not fix all the elements in both since then θ
would be the identity. Unlike the order 5 case, this can definitely happen for order 3. But
from the last paragraph, a θ of order 3 fixes either 3 elements of no elements and in either
case the is at lest one orbit A ⊂ {1, 2, 3, 4, 5, 6} with three elements. But the A must equal
S1 or S2 and since S1 determines S2 and vice versa, θ fixes exactly one L. Since there is
1 one–element orbit and since 3 is prime, there must be 3 three–element orbits.

So far we have just been describing how various permutations act on the set of maximal
sublinks. Now suppose there is an embedding h:K6 → R3. If θ ∈ Auth(K6) and if L is
a maximal sublink, then L and θ(L) have the same linking number up to sign. If we are
careful, we can even figure out if the two linking numbers are the same or if they are the
negatives of each other. In particular, the orbits of θ either have all linking numbers even
or all of them are odd.

Finally suppose θ1 ∈ Auth(K6) has order 5 and θ2 ∈ Auth(K6) has order 3. The θ1 action
shows there are 5 sublinks with odd linking number and 5 with even linking number. The
θ2 action shows that there is either 1 sublink with odd linking number, or there are 3 of
them, or there are 7 of them, but in no case are there 5 of them.

4. The easiest way to show a knot has a 3 coloring is to simply exhibit one. In this case I
found one by assign 1 to the first segment, which I took to be the lower left segment with
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slope −1 and went up. Went I got to the first crossing, I just assigned the next segment
a number of 2 and then 3 = 0 when I got to the next crossing and then 1 after the next
crossing.

Now I am at the upper left crossing and here two of the three segments at the crossing
are already assigned. But we can certainly assign a number to the third segment so that
the required equation holds. This idea works to assign a unique number to each remaining
segment until we arrive at the crossing in the center. Here you have no more free edges so
either the relation holds or it doesn’t. Fortunately for me, the relation does hold.

You can also prove the existence of a 3–coloring by computing a 6 × 6 determinant.

1

2

0

1

0

2

1

Writing generators and relations for the universal group is fairly straight forward. First
you need to orient the knot and decide which crossings are right handed and which are
left handed. We also need to assign variable names to the segments. We assign names as
indicated in the next picture and orient the knot so that if we start at x1 we go in the
direction of x2. No matter how we orient the knot, all the crossings are right handed.
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Hence the group is the group generated by elements {x1, x2, x3, x4, x5, x6, x7} subject to
the seven relations where the number at the crossing is the number of the relation:

1. x2 = x5x1x
−1
5 2. x5 = x2x4x

−1
2 3. x6 = x3x5x

−1
3 2 4. x1 = x4x7x

−1
4

5. x3 = x7x2x
−1
7 6. x4 = x6x3x

−1
6 7. x7 = x3x6x

−1
3

You weren’t asked, but note the relation between the universal knot group and the coloring.
Arbitrarily assign colors to transpositions in the symmetric group on three letters, Σ3: say
1 �→ (23), 2 �→ (12) and 0 �→ (13). If segment xi is colored with k and if k �→ (ab), define
a function ψ:G → Σ3 by ψ(xi) = (ab). Check that seven relations hold. Here is what you
have to check for 1: ψ(x2) = (12), ψ(x1) = (13), ψ(x5) = (23) AND (12) = (13)(23)(13).
The general theory then says that ψ is a group homomorphism and it is easy to check that
in this case it is onto.

x1

x2

x3

x4

x5

x6

x7

1

3

2

4

5

6

7

Finally we need to compute the HOMFLY polynomial. Most of the work involves finding
crossings we can change to get to knots and links that are simple enough that we recognize
them. Pages 7 through 10 show one such path. The page 7 is just the knot, labeled K. In
that picture, one crossing is labelled with a + to signify two things. First of all it is a right
handed crossing since all the crossings are right handed and second, this is the crossing we
will switch. In our HOMFLY skein formula,

�P (L+) + �−1P (L−) + mP (L0) = 0 ,
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K = L+. On page 8 we draw K1, which is K with the crossing switched, and K0 which
is K with the crossing split. Hence L− = K1 and L0 = K0.

Neither K1 nor K0 is immediately recognized by me, so each of them has a plus to indicate
the crossing is right handed and that I wish to apply the skein formula to that particular
crossing. Since K0 is a link, actual orientations are important, so orient K the same way
we have been and then note that there are evident orientations on K1 and K0.

Page 9 ignores K0 and continues the saga of K1. When we apply the skein formula to the
indicated crossing, L+ is K1, L− is labelled K11 and L0 is labelled K10. The knot K11
is also labelled as “unknot” since it can be seen to be unknotted. I still don’t recognize
K10 so it has another marked crossing and page 10 gives the associated links: K10 will
be L+ again since the crossing is +; L1 will be K101 and L0 will be K100. Both of these
I recognize and are named.

On page 11 we return to K0 from page 8. Again L+ is K0 and L1 is labelled K01 and L0

is labelled K00. Both of these I recognize and have named.

We are now in business. Since all the crossings we switched are right handed, we can solve
the skein relation once and for all as

P (L+) = −�−2P (L−) − �−1mP (L0) .

Also we note that only the +Hopf link and the unknot occur on our list of recognized links,
so for now let H be the HOMFLY polynomial for the +Hopf link. Since the HOMFLY
polynomial for the unknot is 1 it hardly seems worthwhile renaming it.

Let us first compute P (K0): we have P (K0) = −�−2P (K01)− �−1mP (K00) = −�−2H −
�−1m · 1 = −�−2H − �−1m.

Note K10 and K0 are the same link, so P (K10) = P (K0).

P (K1) = −�−2P (K11)−�−1mP (K10) = −�−2−�−1m
(
−�−2H−�−1m

)
= −�−2+�−2m2+

�−3mH.

Finally P (K) = −�−2P (K1) − �−1mP (K0) = −�−2
(
−�−2 + �−2m2 + �−3mH

)
−

�−1m
(
−�−2H − �−1m

)
= �−4 − �−4m2 − �−5mH + �−3mH + �−2m2

so, P (K) = �−4 + �−2m2 − �−4m2 +
(
�−3 − �−5

)
mH.

Now the +Hopf link has polynomial H = −�−1m + �−3m−1 + �−1m−1 so

P (K) = �−4 + �−2m2 − �−4m2 +
(
�−3 − �−5

)
m(−�−1m + �−3m−1 + �−1m−1)

= �−4 + �−2m2 − �−4m2 − �−4m2 + �−6 + �−4 + �−6m2 − �−8 − �−6

or

P (K) = − �−8 + 2�−4 − 2�−4m2 + �−6m2 + �−2m2 .
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K100 unknot

K101 +Hopf link



11

K00 unknot

K01 +Hopf link



There are a number of “sanity checks” you can do on your HOMFLY polynomials.
First of all, are all exponents even (if you have a knot or link with an odd number of
components) or odd (if you have a link with an even number of components)? Second, is
P (�, � + �−1) = ±1? Or even P (1, 2) = ±1? Third, do all your polynomials have lowest
degree in m term 0 for a knot, m−1 for a two component link, etc.? Etc.

5. This problem is a variation on one of the problems in assignment 5. First the warm
up exercise. We are given an embedding h:K8 → R3 which we are TOLD is achiral.
This means that there is an automorphism of the graph θ and an orientation reversing
homeomorphism of R3, f , such that f ◦ h = h ◦ θ.

There are 8 different copies of K7 in K8 (any set of seven vertices generates a subgraph
of K8 which is a K7). If θ fixed at least one vertex, then θ would leave at least one
K7 invariant. The composition h′:K7 ⊂ K8 → R3 given by restricting h would satisfy
f ◦h′ = h′ ◦ θ and so this embedding of K7 would be achiral. But K7 is intrinsically chiral
so this can not happen.

What must be happening is that θ takes each embedding of K7 to a different one which is
the mirror image of the original. A bit more precisely, if we consider how θ acts on the set
of K7’s in K8, we see that the orbits must each have an even number of elements since each
K7 can be paired with its mirror image. (This of course requires θ to have even order.)

By the warm up exercise, θ can not fix a vertex, so it further follows that θ moves all
the vertices: acting on {1, 2, 3, 4, 5, 6, 7, 8} θ has no one–element orbits. This also follows
from the last paragraph since the action of θ on the set of K7’s and the action of θ on
{1, 2, 3, 4, 5, 6, 7, 8} are isomorphic: if you know where one vertex goes you know how to
map the vertices of the complementary K7. Hence θ has no one–element orbits because
all orbits have an even number of elements. Of course this says more since it says that θ
acting on {1, 2, 3, 4, 5, 6, 7, 8} can not have any orbits with an odd number of elements. As
an example θ can not be (123)(456)(78) which fixes no element, has order 6, but has some
orbits with 3 elements in them.
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