
Here is a useful result which converts movies of the sort we can see to the ambient
isotopies required by our definitions.

A box in R3 is any subset of the form [a, b] × [c, d] × [e, f ]. The subset really does
look like a box each of whose sides is parallel to one of the coordinate planes. Let X ⊂ R3

be a compact set (that is X is contained in some box). Let X ⊂ U ⊂ R3 with U an open
subset of R3. Let h:U × [0, 1] → R3 be an isotopy of the inclusion U ⊂ R3. Recall that
this is a smooth function which is an embedding for each t ∈ [0, 1] and h0 is the inclusion.

Thom Isotopy Extension Theorem: Given an isotopy as above, there exists an ambient
isotopy H:R3 × [0, 1] → R3 with H(h(x, 0), t) = h(x, t) for all x ∈ X.

Roughly speaking, this says that if you see a motion of a set X in which you are
interested and if you can extend the motion to drag along a little neighborhood of X, then
you could actually find an ambient isotopy which produces the motion.

We finally return to the proof of Theorem 3. As we mention at the time, we will
actually give an unlinking algorithm. Additionally we give an algorithm in which we
switch only crossings between different components of L and change L to a new link
K1⊥⊥ · · ·⊥⊥Kn where the Ki are the subknots of L.

We begin with a more convenient description of L1⊥⊥L2 and L1#L2. Any link is a
compact set so we can find a box S with L ⊂ S. By making the box a little bigger, we
will be able to find an open set U with X ⊂ U ⊂ S. Hence motions obtained by dragging
links around inside boxes give equivalent links.

The disjoint union can now be succinctly described. Put L1 ⊂ R3 in a box; put
L2 ⊂ R3 in a box; move the two boxes so as to be disjoint. You can find motions to see
that the actual boxes you used and where you dragged them in R3 doesn’t matter. If there
is an ambient isotopy from L1 to L′

1, the motion of L1 given by the ambient isotopy can
be contained in a box and indeed, the box can be chosen to contain a neighborhood of the
link under the motion. This shows that the equivalence class of L1⊥⊥L2 only depends on
the equivalence classes of the L1 and the L2.

As usual, L1#L2 is a bit more involved. Put L1 ⊂ R3 in a box and pick a point
p1 ∈ L1. A band is a smooth embedding b: [−1, 1] × [0, 1] → R3. Add a band to L1 as
follows. Pick an ε1 > 0 and an embedding �r: [−ε1, ε1] → R3 which gives an arc length
parameterization of the segment on which p1 lies and so that �r(0) = p1 and motion in the
positive s direction traverses the curve in the same direction as the orientation. Extend
this function to a band b1: [−1, 1] × [0, 1] → R3 so that b1(s, 0) = �r(ε1 · s) and b1(s, t) is
a straight line segment lying on one side of the box containing L1. Further require that a
small neighborhood of the end of the band is perpendicular to the wall at which it ends.
Further choose the embedding b1 so that it misses L1 except along [−1, 1] × 0 and the
image of b1 remains inside the box. Use b1 to denote both the map and its image.

It is a theorem of differential topology that there is an ambient isotopy which gives
the following motion of L1∪ b1. Under the motion, L1 does not move and b1 is pulled back
towards [−1, 1] × 0. Given any δ > 0 there is a motion so that at time t the embedding
is b1

(
s, 1 + t(δ − 1)

)
. Finally, given any two bands, b1 and b′1 and any neighborhood U of

L1, there is a δ > 0 and an ambient isotopy that leaves L1 fixed, shrinks the band b1 using
δ so that the shrunken band lies inside U , does a further motion inside U so that band
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is now b′1 shrunken using δ, and finally expands the shrunken band back out to b′1. The
entire motion takes place inside the box.

Do the same thing to L2 to get a band b2. Move the boxes for L1 and L2 until they
are disjoint. Add one more band, b3 such that

1) b3(s, 0) is the line segment at which b1 ends; the direction of increasing s on b3

agrees with the direction of increasing s on b1; and b3 is initially perpendicular
to the wall at which it begins.

2) b3(s, 1) is the line segment at which b2 ends; the direction of increasing s on b3

agrees with the direction of increasing s on b2; and b3 is finally perpendicular to
the wall at which it ends.

3) For all 0 < t < 1 and −1 ≤ s ≤ 1, b3(s, t) lies in R3 minus the two boxes.
Glue b1 to b3 to b2 to get a band b. The link L1#L2 is formed from (L1⊥⊥L2) ∪ b by

deleting the image of (−1, 1)× [0, 1]. With a bit of energy, one can see that its equivalence
class only depends on the equivalence classes of L1 and L2, together with the components
of the links in which the points p1 and p2 lie.

One reason for being careful with the connected sum is that there is a generalization,
called the band connected sum and often written L1 #b L2, which is a generalization of
the connected sum. Informally, start with L1⊥⊥L2 and start a band at p1 (just as for the
connected sum) and drag the band anywhere you like in R3 − (L1⊥⊥L2) before attaching
it at p2.

The band connected sum is a generalization of the connected sum (which severely
restricts how the band can be placed). It is not well–defined by just specifying the com-
ponents at which the band begins and ends. The band sum of even two unknots can be a
non–trivial knot with a non–trivial HOMFLY polynomial. Hence one can not even give a
formula for the HOMFLY polynomial of a band sum it terms of the pieces. The key thing
that is special in the connected sum case is that the final link does not depend on how
many twists are in the band, where as this is false for a general band sum. You can begin
by untwisting the band all right, but if the band passes through L2, when you twist L2

the band will change.

We now begin to describe our algorithms. Both algorithms begin by numbering the
components of the link. Let Ki be the ith subknot in this labelling and picking a point
pi ∈ Ki for 1 ≤ i ≤ n where n is the number of components. Orient each component as
well.

Unsplitting Algorithm: Begin at p1 and traverse K1 in the direction determined by the
orientation. When we come to a crossing between K1 and any other crossing, switch it if
necessary to insure that it is an under crossing. When we return to p1 move on to K2. In
general, we start at pi and traverse Ki in the direction determined by the orientation. If
we encounter a crossing whose other strand comes from Kj with j > i, switch if necessary
so that the crossing is an under crossing. When we have traversed K1 through Kn−1, the
resulting link is K1⊥⊥ · · ·⊥⊥Kn.

Remark: A second description of this process is to just grap the first component and pull
it down, switching any crossings that try to hang you up. This may explain how some
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unlinking chemical processes work.

Proof : Write L1 for the sublink of L consisting of all the components except K1. Let L(1)

be the link we obtain after traversing K1. Both K1 and L1 are sublinks of L(1) since L
and L(1) only differ, if at all, in the crossings between K1 and L1. In L(1) all the crossings
of K1 are below L1 by construction so we can drop K1 straight down until it fits in a box
and L1 fits in a disjoint box. Hence L(1) = K1⊥⊥L1.

Number the component of L1 by subtracting one from the number they acquire as
a sublink of L. The second step of algorithm applied to L is just the first step of the
algorithm applied to L1 and we are done.

Unknoting Algorithm: Let K be an oriented knot and choose a point on it. Traverse
the knot starting at p in the direction of the orientation. When you come to a crossing,
if it is the first time you have traversed it, switch it if necessary to insure that it is an
undercrossing. (If this is the second time you have seen it, it will be an over crossing.)
When you have traversed the knot once, the new knot is the unknot.

Remarks: You can put the two algorithms together to unlink a link. Just change the
crossings so that “first time is an undercrossing”. When the two strands of a crossing come
from different components, this is determined by the way the components were numbered.

Proof : Let K be a regular projection of a knot satisfying “first crossing under” starting at
p0 ∈ K. It suffices to prove K is a regular projection of the unknot. If there are no crossings
this is easy, so assume we have some crossings. The first crossing is an under crossing and
as we continue around the knot we may encounter several under crossings in a row, but
eventually we will hit our first overcrossing. Pick p1 ∈ K after the last under crossing and
before the first over crossing. After p1 we see a sequence of one or more over crossings and
we pick p2 ∈ K after the last over crossing and before the next under crossing. If we have
been around the knot completely, pick p2 = p0. Continue around the knot picking points
pi ∈ K where p2i+1 is a point between an under crossing and an adjacent over crossing
while p2i is a point between an over crossing and an adjacent under crossing. Between
pi and pi+1 we see only crossings of the same type. Eventually you will get around the
knot and encounter the initial under crossing and you are done. Note the interval between
p2n−1 and p0 consists of a sequence of over crossings for some n. Consider the product
Π

i �=j

(
(pi)x − (pj)x

)(
(pi)y − (pj)y

)(
(pi)z − (pj)z

)
. If necessary, jiggle the embedding K ⊂ R3

so that this product is not zero. Slide the embedding up if necessary to insure the knot
lies above the xy–plane, which is the plane z = 0.

Drop the segment between p0 and p1 straight down to the plane z = −2n. This can
be done because all crossings of this segment lie under the rest of the knot. The union
of the projected segment plus the vertical lines from p0 and p1 to their projections into
z = −2n plus the knot minus the segment is equivalent to the original knot. Next push
the segment from p1 to p2 down to the plane z = −2n + 1. This can be done since the
only crossings below this strand have been pushed all the way down to −2n. This knot is
still equivalent to the original one. Continue in this fashion around the knot.
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The projection into the xy–plane is no longer regular because of the vertical drops
at the pi but the image in the xy–plane has not changed. Each of the segments between
a pair of the pi now lies in a plane for which z is a constant and each segment lies in a
different plane.

Given an embedded arc in a plane between two points, there is an ambient isotopy of
the plane starting with the arc and finishing with the straight line between the points. This
is not trivial to prove but seems reasonable. Imagine the arc is made of a very stretched
piece of rubber band so when you stop holding it down, except at the end points, it will
snap taut and that will be a straight line. Hence the original knot is equivalent to one
with the segments in different planes parallel to the xy–plane and with the arcs in each
plane being straight lines.

Look at a projection into the yz–plane. Because the coordinates of the pi are all
distinct, this projection has no crossings. Hence it is regular and the knot is the unknot.
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