Homework Problems (March 30, 1998)

Mathematics 522— Stochastic Differential Equations Andrew Sommese

December 15, 2004

Test 2 will be in class on Wednesday, April 8

A postscript file of the most recent version of this sheet will always be in the class folder: /afs/nd.edu/coursesp.98

Please see me if there are concepts that you do not feel comfortable with.

1 Problems due Monday, April 6, 1998

Let X be a random variable with normal probability distribution function having mean μ and variance σ^2 . Show that the moment generating function $M_X(t) := E(e^{tX})$ of X is $e^{\mu t + \frac{\sigma^2 t^2}{2}}$. Assuming that $\mu = 0$ compute $E(X^n)$. Deduce from problem (??) that any finite linear combination of independent normal variables is normal (you can use the fact that the pdf of a random variable X is determined by its moment generating function $M_X(t)$ if $M_X(t)$ exists in a neighborhood of t = 0). Let B_t denote the standard Brownian motion on $(C[0,\infty),)$ with $B_0 = 0$ and the measure algebra $:= \sigma(B_s; s \in [0,\infty))$. Deduce from problem (??) that for any $\alpha > 0$ the $e^{\alpha B_t - \frac{\alpha^2 t}{2}}$ is a martingale relative to the filtration of given $t := \sigma(B_s; s \leq t)$. Let f(x) be a uniformly continuous real valued function on $\cap [0, 1]$ relative to the usual metric on [0, 1]. Show that f has a unique extension to a continuous function on [0, 1].

2 Problem due Monday, March 16, 1998

Let X_1, X_2, \ldots be identically distributed and independent random variables satisfying $E(|X_i|) < \infty$. Let $S_n = \sum_{i=1}^n X_i$ for $n \ge 1$. Show that if $L := \lim_{n \to \infty} S_n/n$ exists then

$$L = \lim \, \sup_{n \to \infty} \frac{X_{k+1} + \dots + X_{k+n}}{n}.$$

3 Problems due Monday, February 23, 1998

E10.4, E10.7 (For 10.7 show only that N_n is a martingale and using this compute what E(T) is: you will need to use the first part of the problem done in class.)

4 Problems due Monday, February 16, 1998

E10.1, E10.3

5 Problems due Monday, February 9, 1998

Do Problems E9.2

6 Problems due Monday, February 2, 1998

Do Problem E5.1

7 Problems due Wednesday, January 28, 1998

Let C[0, 1] denote the space of continuous real valued functions on the unit interval, [0, 1]. We define the sup-norm for $f \in C[0, 1]$ by $||f|| := \max_{x \in [0, 1]} |f(x)|$. We define the distance between two functions $f, g \in C[0, 1]$ by d(f, g) := ||f - g||. For $x \in [0, 1]$, we denote the evaluation map $x : C[0, 1] \to$ by x(f) := f(x). Given $x \in [0, 1]$ prove that x is a continuous mapping from C[0, 1] with the topology given by the using the above distance and with its usual metric topology.

We let (C[0,1]) denote the σ -algebra associated C[0,1] with the toplogy given by the metric above unless it is said otherwise this will always be the toplogy referred to when I talk about open sets of C[0,1]. We let $(\{x | x \in [0,1]\})$ denote the σ -algebra generated by all of the evaluation maps for points $x \in [0,1]$. Prove that $(C[0,1]) = (\{x | x \in [0,1]\})$. Let me give a suggested solution for the last problem— justifications of the steps are needed. Note that since $_x$ is continuous by Problem 1, we have that $_x^{-1}(a, b)$ is open in C[0,1]. Therefore (why?) $(\{x | x \in [0,1]\} \subset (C[0,1])$. To show the other inclusion prove first that we can use the sets $B_r(f) := \{g \in C[0,1] | d(g,f) \le r\}$ parameterized by $f \in C[0,1]$ and $r \in , r > 0$ as a generating set for (C[0,1]). To show this you should note that since any open set of C[0,1]is a countable union of the open balls $B_r(f) := \{g \in C[0,1] | d(g,f) < r\}$, it follows (why?) that (C[0,1]) is generated by these open balls. Since $B_r(f) = \bigcup_{q \in , 0 < q < r} B_q(f)$ and $B_r(f) = \bigcap_{q \in , q > r} B_q(f)$ it follows (why?) that the closed balls $B_r(f)$ also generate (C[0,1]). Therefore if we show that the sets $B_r(f) \subset (\{x | x \in [0,1]\})$ we will have that $(C[0,1]) \subset (\{x | x \in [0,1]\})$ and therefore that $(C[0,1]) = (\{x | x \in [0,1]\})$. Why is it true that the set $\bigcap_{q_1 \in ,q_1 > r} \left(\bigcap_{q_2 \in (\cap[0,1])}^{-1}(f(q_2) - q_1, f(q_2) + q_1)\right)$ is

- 1. an element of $(\{x | x \in [0, 1]\});$
- 2. which is in fact equal to $B_r(f)$.