
MATH 604 TAKE-HOME EXAM

Due March 15, 2004

1. Let l∞ be the collection of bounded sequences in C equipped with
the norm ‖x‖∞ = supk |xk| for x = (x1, x2, · · · ).

(1) Prove (l∞, ‖ · ‖∞) is a Banach space.
(2) Let c0 be the collection of sequences in C convergent to 0. Prove

c0 is a closed subspace of l∞.
(3) For any x = (x1, x2, · · · ) ∈ l∞, find dist(x, c0). Can this distance

be realized by an element in c0? Justify your answers.

2. Let T be a bounded linear operator in a Hilbert space H and
satisfy |(Tx, x)| ≥ c‖x‖2 for any x ∈ H. Then T has a bounded inverse
in B(H).

3. Let X be a NVS. A nonempty subset O ⊂ X is weakly open if for
any x0 ∈ O there exists a finite collection of f1, · · · , fn ∈ X ∗ such that

x0 + ∩n
k=1{x ∈ X ; |fk(x)| < 1} ⊂ O.

A subset C is weakly closed if Cc is weakly open. Prove the following
results.

(1) X is weakly open; a countable union of weakly open subsets
is weakly open; a finite intersection of weakly open subsets is weakly
open. Moreover, {x ∈ X ; |f(x)| < 1} is weakly open for any f ∈ X ∗.

(2) Any weakly open subset is open (in the norm topology); any
weakly closed subset is closed; the identity map i : (X , ‖ · ‖) → (X , w)
is continuous.

(3) If X is infinite dimensional, any nonempty weakly open subset is
unbounded. (Hint: Prove the following statement first: If ∩n

k=1N (fk) =
{0} for some f1, · · · , fn ∈ X ∗, then X is finite dimensional.)

(4) Closed subspaces are weakly closed.
(5) Let xn, n = 1, · · · , and x be elements in X . Then xn converges

to x weakly in X (i.e., f(xn) converges to f(x) for any f ∈ X ∗) if and
only if for any weakly open subset O containing x there exists an N
such that xn ∈ O for any n ≥ N .

4. Solve by Riese Representation Theorem the following boundary
value problem for f ∈ C[0, 1]

u(4) + u = f in (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0.

Provide all the necessary preparations. (You may assume all the results
we proved in solving the Sturm-Liouville system.)
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Solution of Problem 1. (1) To prove ‖ · ‖∞ is a norm, we shall only
prove it satisfies the triangle inequality. There holds for any k

|xk + yk| ≤ |xk|+ |yk| ≤ ‖x‖∞ + ‖y‖∞.
By taking supremum over k, we get ‖x+ y‖∞ ≤ ‖x‖∞ + ‖y‖∞.

Now we prove (l∞, ‖·‖∞) is complete. Suppose {x(n) = (x
(n)
1 , x

(n)
2 , · · · )}

is a Cauchy sequence in l∞. By |x(n)
k − x

(m)
k | ≤ ‖x(n) − x(m)‖∞ for

each fixed k, the scalar sequence {x(n)
k } is Cauchy and hence is con-

vergent. For each k, we let x
(n)
k → xk as n → ∞. We shall prove

x = (x1, x2, · · · ) ∈ l∞ and ‖x(n) − x‖∞ → 0 as n→∞. Note {x(n)} is
bounded in l∞ since it is Cauchy. Hence there exists an M > 0 such
that ‖x(n)‖∞ ≤M for any n. This implies in particular for any k

|x(n)
k | ≤M.

By letting n→∞, we get

|xk| ≤M.

Now we may take the supremum over k to conclude ‖x‖∞ ≤ M . The
proof of the convergence ‖x(n) − x‖∞ → 0 is similar and is omitted.

(2) It is obvious that c0 is a subspace. Now we prove c0 is closed.
To this end, we let {x(n)} be a sequence in c0 which is convergent to

x in l∞. We need to prove x0 ∈ c. Let x(n) = (x
(n)
1 , x

(n)
2 , · · · ) and

x = (x1, x2, · · · ). We need to prove xk → 0 as k →∞. To this end, we
just note

|xk| ≤ |x(n)
k − xk|+ |x(n)

k | ≤ ‖x(n) − x‖∞ + |x(n)
k |.

We first take a fixed n sufficiently large so that the first term is small.
Then we take any k large so that the last term is small. This proves
the convergence of the sequence {xk} to 0.

(3) For a fixed x ∈ l∞, we let D = lim sup |xk|. For any y =
(y1, y2, · · · ) ∈ c0, limk→∞ yk = 0, we have

‖x− y‖∞ = sup
k
|xk − yk| ≥ lim sup

k→∞
|xk − yk| = lim sup

k→∞
|xk| = D.

Hence we have

dist(x, c0) ≥ D.

For each fixed n, set y(n) = (x1, · · · , xn, 0, · · · ) ∈ c0. Then we have
x− y(n) = (0, · · · , 0, xn+1, xn+2, · · · ) and

‖x− y(n)‖∞ = sup
k≥n+1

|xk| → lim sup
k

|xk| = D, as n→∞.

Hence {y(n)} is a minimizing sequence and d(x, c0) = D.
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Next, for each fixed x ∈ l∞ as above, consider y = (y1, y2, · · · ) with

yn =


xn −D if xn > D

0 if |xn| ≤ D

xn +D if xn < −D.
Then it is easy to see that y ∈ c0 and

xn − yn =


D if xn > D

xn if |xn| ≤ D

−D if xn < −D.

Obviously ‖x− y‖∞ = D.
Therefore, dist(x, c0) = lim supn→∞ |xn| and this distance is realized

by some element in c0. �

Solution of Problem 2. By

|(Tx, x)| ≤ ‖Tx‖‖x‖, and |(Tx, x)| = |(x, T ∗x)| ≤ ‖T ∗x‖‖x‖,
we get

c‖x‖ ≤ ‖Tx‖, c‖x‖ ≤ ‖T ∗x‖ for any x ∈ H.
This implies both T and T ∗ are injective, i.e.,N (T ) = {0} andN (T ∗) =

0. Next, recall R(T ) = N (T ∗)⊥. (This is a homework problem.) We

obtain R(T ) = H. Now we prove R(T ) is closed. To this end, we
consider yn = Txn ∈ R(T ) such that yn → y in H. We shall prove
y ∈ R(T ). By c‖xn − xm‖ ≤ ‖Txn − Txm‖, we note {xn} is a Cauchy
sequence in X , and hence we may assume xn → x in H. By the conti-
nuity of T , we conclude yn = Txn → Tx, and hence y = Tx ∈ R(T ).
Therefore R(T ) = H. Hence T is injective and surjective, and then has
an inverse. By c‖x‖ ≤ ‖Tx‖ for any x ∈ H, we get c‖T−1y‖ ≤ ‖y‖ for
any y ∈ H. Therefore, T−1 ∈ B(H). (Note, we did not use the Banach
Inverse Theorem.) �

Solution of Problem 3. We first note that N (f) is a closed subspace of
codimension 1 for any nonzero f ∈ X ∗.

(1) This is straightforward and is omitted.
(2) Let O be weakly open and x0 ∈ O be an arbitrary point. Then

there exist f1, · · · , fn ∈ X ∗ such that

x0 + ∩n
k=1{x ∈ X ; |fk(x)| < 1} ⊂ O.

Take r = (sup1≤k≤n{‖fk‖})−1. Then we have

B(0, r) ⊂ ∩n
k=1{x ∈ X ; |fk(x)| < 1}.
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This implies B(x0, r) ⊂ O. Hence O is open (in the norm topology).
The other two statements follow easily.

(3) We shall prove the following first: Let X be a NVS and f1, · · · , fn, f ∈
X ∗. Then f ∈ span{f1, · · · , fn} if and only if ∩n

i=1N (fi) ⊂ N (f).
⇒ Suppose f =

∑n
i=1 cifi. For any x ∈ ∩n

i=1N (fi), we have fi(x) =
0, and then f(x) = 0, or x ∈ N (f).
⇐. We first consider whether

(∩i6=nN (fi)) ∩N (fn)c 6= ∅.

If ∩i6=nN (fi) ⊂ N (fn), we simply drop fn and consider {f1, · · · , fn−1}.
Otherwise, we consider whether

(∩i6=n−1N (fi)) ∩N (fn−1)
c 6= ∅.

We continue this process. Therefore we may assume for any k =
1, · · · , n

(∩i6=kN (fi)) ∩N (fk)
c 6= ∅.

Hence there exists an xk ∈ (∩i6=kN (fi)) ∩N (fk)
c, or

fi(xk) = 0 for i 6= k, fk(xk) = 1.

For any x ∈ X , consider y = x −
∑n

i=1 fi(x)xi. Then fk(y) = fk(x) −
fk(x) = 0, or y ∈ ∩n

i=1N (fi). By the assumption, y ∈ N (f), or
f(y) = 0. Hence we have f(x) =

∑n
i=1 fi(x)f(xi), or f =

∑n
i=1 f(xi)fi.

Now we comeback to (3). We shall prove that any weakly open set
containing 0 is unbounded. First, by the definition of weakly open set,
there exist f1, · · · , fn ∈ X ∗ such that

{x ∈ X ; |f(x)| < 1} ⊂ O.

In particular, we have

∩n
i=1N (fi) ⊂ O.

If ∩n
i=1N (fi) = {0}, then ∩n

i=1N (fi) ⊂ N (f) for any f ∈ X ∗. This im-
plies X ∗ is spanned by f1, · · · , fn, and hence finite dimensional. Then
it is easy to see that X is finite dimensional, which leads to a contradic-
tion. Therefore, we conclude that ∩n

i=1N (fi) is a nontrivial subspace,
and hence unbounded. So O is unbounded.

(4) Let M be a closed subspace in X . We shall prove that Mc

is weakly open. For any x0 /∈ M, there holds dist(x0,M) > 0. By
Hahn-Banach Theorem, there exists an f ∈ X ∗ such that f |M = 0
and f(x0) = 1. This implies x0 + {x ∈ X ; |f(x)| < 1} ⊂ Mc, since
f(x0 + x) = f(x0) + f(x) = 1 + f(x) 6= 0 if |f(x)| < 1. Hence Mc is
weakly open.

(5) We shall only prove the case x = 0.
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⇒ Let {xm} be a sequence convergent to 0 weakly. Consider any
weakly open subset O of 0. Then there exist f1, · · · , fn ∈ X ∗ such that

∩n
k=1{x ∈ X ; |fk(x)| < 1} ⊂ O.

By the weak convergence of {xm} to 0, there holds fk(xm) → 0 as
m → ∞ for any k = 1, · · · , n. Then there exists an N such that
|fk(xm)| < 1 for any m ≥ N and any k = 1, · · · , n. This implies
xm ∈ O for any m ≥ N .
⇐ Let {xm} be a sequence such that for any weakly open set O

containing 0 there exists an N such that xn ∈ O for any m ≥ N . For
any f ∈ X ∗, we shall prove f(xm) → 0. To this end, we consider an
arbitrary ε > 0 and note that Oε = {x ∈ X ; |f(x)| < ε} is weakly open
by (1). Hence there exists an N such that for any m ≥ N there holds
xm ∈ Oε, or |f(xm)| < ε. �

Solution of Problem 4. Set

X = {v ∈ C2[0, 1]; v(0) = v(1) = v′(0) = v′(1) = 0}.
For any v ∈ X, we multiply v̄ to the equation and integrate by parts
to get ∫ 1

0

[u′′v̄′′ + uv̄]dx =

∫ 1

0

fv̄dx.

For any u, v ∈ X, set

(u, v)H2 =

∫ 1

0

[u′′v̄′′ + uv̄]dx.

This is an inner product in X, and it induces a norm

‖u‖H2 =

(∫ 1

0

[|u′′|2 + |u|2]dx
) 1

2

.

In the following, we also set

‖u‖L2 =

(∫ 1

0

|u|2dx
) 1

2

,

‖u‖H1 =

(∫ 1

0

[|u′|2 + |u|2]dx
) 1

2

,

and

H1
0(0, 1) = {u ∈ AC[0, 1];u′ ∈ L2(0, 1), u(0) = u(1) = 0}.

We proved that (H1
0(0, 1), (·, ·)H1) is a Hilbert space.
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Step 1. We set

H2
0(0, 1) = {u ∈H1

0(0, 1);u′ ∈ H1
0(0, 1)}

= {u ∈AC[0, 1];u′ ∈ AC[0, 1], u′′ ∈ L2(0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0}.

We claim (H2
0(0, 1), (·, ·)H2) is a Hilbert space. We only need to prove

H2
0(0, 1) is complete with respect to the norm ‖ · ‖H2 .
Recall the estimate for any u ∈ H1

0(0, 1)

‖u‖L2 ≤ ‖u′‖L2 .

This implies for u ∈ H2
0(0, 1)

‖u‖H1 + ‖u′‖H1 ≤ 4‖u‖H2 .

Let {un} be a Cauchy sequence in H2
0(0, 1). Then {un} and {u′n}

are Cauchy in H1
0(0, 1). There exist u, v ∈ H1

0(0, 1) such that un → u
and u′n → v in H1

0(0, 1). In particular, u′n → u′ and u′n → v in L2(0, 1).
This implies u′ = v. Hence we have u ∈ H2

0(0, 1), and we can check
easily un → u in H2

0(0, 1).
Remark. We may prove directly that the completion of X under the

norm ‖ · ‖H2 is exactly H2
0(0, 1).

Step 2. Define

F (v) =

∫ 1

0

vf̄dx for any v ∈ H2
0(0, 1).

Then obviously F is a linear functional on H2
0(0, 1). Next, we have by

Schwartz inequality

|F (v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H2
0(0,1).

Hence F is a bounded linear functional on H2
0(0, 1). By Riesz Rep-

resentation Theorem, there exists a unique u ∈ H2
0(0, 1) such that

(u, ϕ)H2
0(0,1) = F (ϕ) for any ϕ ∈ H2

0(0, 1), i.e.,∫ 1

0

[u′′ϕ̄′′ + uϕ̄]dx =

∫ 1

0

fϕ̄dx for any ϕ ∈ H2
0(0, 1).

Step 3. By setting v = f − u, we obtain

(1)

∫ 1

0

u′′ϕ̄′′dx =

∫ 1

0

vϕ̄dx for any ϕ ∈ H2
0(0, 1).

We shall prove u′′ ∈ AC, u(3) ∈ AC, u(4) ∈ L2 and u(4) = v. The
crucial step is the following. We shall prove, under the assumption (1),
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there exists a w ∈ L2(0, 1) such that

(2)

∫ 1

0

u′′ψ̄′dx =

∫ 1

0

wψdx for any ψ ∈ H1
0(0, 1).

Suppose this is already done. We conclude from (2) that u′′ ∈
AC(0, 1) and u(3) = −w ∈ L2. Now we may integrate by parts the
left side of (1) to get∫ 1

0

u(3)ϕ̄′dx = −
∫ 1

0

vϕ̄dx for any ϕ ∈ H2
0(0, 1).

Then we get u(3) ∈ AC(0, 1) and u(4) = v, or u(4) + u = f .
To prove (2), we set g(x) =

∫ x

1/2
v(t)dt. Then (1) implies

(3)

∫ 1

0

u′′ϕ̄′′dx = −
∫ 1

0

gϕ̄′dx for any ϕ ∈ H2
0(0, 1).

Fix a φ ∈ H2
0(0, 1) such that

∫ 1

0
φ = 1. For any ψ ∈ H1

0(0, 1), consider

ϕ(x) =

∫ x

0

ψ −
∫ 1

0

ψ

∫ x

0

φ.

It is easy to check that ϕ ∈ H2
0(0, 1). Substituting such a ϕ in (3), we

get ∫ 1

0

u′′ψ̄′ =

∫ 1

0

(
−g +

∫ 1

0

(u′′φ̄′) +

∫ 1

0

(gφ̄)

)
ψ̄.

This finishes the proof of (2) with w = −g +
∫ 1

0
(u′′φ̄′) +

∫ 1

0
(gφ̄). �


