MATH 604 TAKE-HOME EXAM Due March 15, 2004

1. Let l^{∞} be the collection of bounded sequences in \mathbb{C} equipped with the norm $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$ for $x=\left(x_{1}, x_{2}, \cdots\right)$.
(1) Prove $\left(l^{\infty},\|\cdot\|_{\infty}\right)$ is a Banach space.
(2) Let c_{0} be the collection of sequences in \mathbb{C} convergent to 0 . Prove c_{0} is a closed subspace of l^{∞}.
(3) For any $x=\left(x_{1}, x_{2}, \cdots\right) \in l^{\infty}$, find $\operatorname{dist}\left(x, c_{0}\right)$. Can this distance be realized by an element in c_{0} ? Justify your answers.
2. Let T be a bounded linear operator in a Hilbert space \mathcal{H} and satisfy $|(T x, x)| \geq c\|x\|^{2}$ for any $x \in \mathcal{H}$. Then T has a bounded inverse in $\mathcal{B}(\mathcal{H})$.
3. Let \mathcal{X} be a NVS. A nonempty subset $O \subset \mathcal{X}$ is weakly open if for any $x_{0} \in O$ there exists a finite collection of $f_{1}, \cdots, f_{n} \in \mathcal{X}^{*}$ such that

$$
x_{0}+\cap_{k=1}^{n}\left\{x \in \mathcal{X} ;\left|f_{k}(x)\right|<1\right\} \subset O .
$$

A subset C is weakly closed if C^{c} is weakly open. Prove the following results.
(1) \mathcal{X} is weakly open; a countable union of weakly open subsets is weakly open; a finite intersection of weakly open subsets is weakly open. Moreover, $\{x \in \mathcal{X} ;|f(x)|<1\}$ is weakly open for any $f \in \mathcal{X}^{*}$.
(2) Any weakly open subset is open (in the norm topology); any weakly closed subset is closed; the identity map $i:(\mathcal{X},\|\cdot\|) \rightarrow(\mathcal{X}, w)$ is continuous.
(3) If \mathcal{X} is infinite dimensional, any nonempty weakly open subset is unbounded. (Hint: Prove the following statement first: If $\cap_{k=1}^{n} \mathcal{N}\left(f_{k}\right)=$ $\{0\}$ for some $f_{1}, \cdots, f_{n} \in \mathcal{X}^{*}$, then \mathcal{X} is finite dimensional.)
(4) Closed subspaces are weakly closed.
(5) Let $x_{n}, n=1, \cdots$, and x be elements in \mathcal{X}. Then x_{n} converges to x weakly in \mathcal{X} (i.e., $f\left(x_{n}\right)$ converges to $f(x)$ for any $f \in \mathcal{X}^{*}$) if and only if for any weakly open subset O containing x there exists an N such that $x_{n} \in O$ for any $n \geq N$.
4. Solve by Riese Representation Theorem the following boundary value problem for $f \in C[0,1]$

$$
\begin{aligned}
& u^{(4)}+u=f \text { in }(0,1) \\
& u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0
\end{aligned}
$$

Provide all the necessary preparations. (You may assume all the results we proved in solving the Sturm-Liouville system.)

Solution of Problem 1. (1) To prove $\|\cdot\|_{\infty}$ is a norm, we shall only prove it satisfies the triangle inequality. There holds for any k

$$
\left|x_{k}+y_{k}\right| \leq\left|x_{k}\right|+\left|y_{k}\right| \leq\|x\|_{\infty}+\|y\|_{\infty} .
$$

By taking supremum over k, we get $\|x+y\|_{\infty} \leq\|x\|_{\infty}+\|y\|_{\infty}$.
Now we prove $\left(l^{\infty},\|\cdot\|_{\infty}\right)$ is complete. Suppose $\left\{x^{(n)}=\left(x_{1}^{(n)}, x_{2}^{(n)}, \cdots\right)\right\}$ is a Cauchy sequence in l^{∞}. By $\left|x_{k}^{(n)}-x_{k}^{(m)}\right| \leq\left\|x^{(n)}-x^{(m)}\right\|_{\infty}$ for each fixed k, the scalar sequence $\left\{x_{k}^{(n)}\right\}$ is Cauchy and hence is convergent. For each k, we let $x_{k}^{(n)} \rightarrow x_{k}$ as $n \rightarrow \infty$. We shall prove $x=\left(x_{1}, x_{2}, \cdots\right) \in l^{\infty}$ and $\left\|x^{(n)}-x\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. Note $\left\{x^{(n)}\right\}$ is bounded in l^{∞} since it is Cauchy. Hence there exists an $M>0$ such that $\left\|x^{(n)}\right\|_{\infty} \leq M$ for any n. This implies in particular for any k

$$
\left|x_{k}^{(n)}\right| \leq M
$$

By letting $n \rightarrow \infty$, we get

$$
\left|x_{k}\right| \leq M .
$$

Now we may take the supremum over k to conclude $\|x\|_{\infty} \leq M$. The proof of the convergence $\left\|x^{(n)}-x\right\|_{\infty} \rightarrow 0$ is similar and is omitted.
(2) It is obvious that c_{0} is a subspace. Now we prove c_{0} is closed. To this end, we let $\left\{x^{(n)}\right\}$ be a sequence in c_{0} which is convergent to x in l^{∞}. We need to prove $x_{0} \in c$. Let $x^{(n)}=\left(x_{1}^{(n)}, x_{2}^{(n)}, \cdots\right)$ and $x=\left(x_{1}, x_{2}, \cdots\right)$. We need to prove $x_{k} \rightarrow 0$ as $k \rightarrow \infty$. To this end, we just note

$$
\left|x_{k}\right| \leq\left|x_{k}^{(n)}-x_{k}\right|+\left|x_{k}^{(n)}\right| \leq\left\|x^{(n)}-x\right\|_{\infty}+\left|x_{k}^{(n)}\right| .
$$

We first take a fixed n sufficiently large so that the first term is small. Then we take any k large so that the last term is small. This proves the convergence of the sequence $\left\{x_{k}\right\}$ to 0 .
(3) For a fixed $x \in l^{\infty}$, we let $D=\limsup \left|x_{k}\right|$. For any $y=$ $\left(y_{1}, y_{2}, \cdots\right) \in c_{0}, \lim _{k \rightarrow \infty} y_{k}=0$, we have

$$
\|x-y\|_{\infty}=\sup _{k}\left|x_{k}-y_{k}\right| \geq \limsup _{k \rightarrow \infty}\left|x_{k}-y_{k}\right|=\limsup _{k \rightarrow \infty}\left|x_{k}\right|=D .
$$

Hence we have

$$
\operatorname{dist}\left(x, c_{0}\right) \geq D
$$

For each fixed n, set $y^{(n)}=\left(x_{1}, \cdots, x_{n}, 0, \cdots\right) \in c_{0}$. Then we have $x-y^{(n)}=\left(0, \cdots, 0, x_{n+1}, x_{n+2}, \cdots\right)$ and

$$
\left\|x-y^{(n)}\right\|_{\infty}=\sup _{k \geq n+1}\left|x_{k}\right| \rightarrow \underset{k}{\limsup }\left|x_{k}\right|=D, \quad \text { as } n \rightarrow \infty .
$$

Hence $\left\{y^{(n)}\right\}$ is a minimizing sequence and $d\left(x, c_{0}\right)=D$.

Next, for each fixed $x \in l^{\infty}$ as above, consider $y=\left(y_{1}, y_{2}, \cdots\right)$ with

$$
y_{n}= \begin{cases}x_{n}-D & \text { if } x_{n}>D \\ 0 & \text { if }\left|x_{n}\right| \leq D \\ x_{n}+D & \text { if } x_{n}<-D\end{cases}
$$

Then it is easy to see that $y \in c_{0}$ and

$$
x_{n}-y_{n}= \begin{cases}D & \text { if } x_{n}>D \\ x_{n} & \text { if }\left|x_{n}\right| \leq D \\ -D & \text { if } x_{n}<-D\end{cases}
$$

Obviously $\|x-y\|_{\infty}=D$.
Therefore, $\operatorname{dist}\left(x, c_{0}\right)=\lim \sup _{n \rightarrow \infty}\left|x_{n}\right|$ and this distance is realized by some element in c_{0}.

Solution of Problem 2. By

$$
|(T x, x)| \leq\|T x\|\|x\|, \text { and }|(T x, x)|=\left|\left(x, T^{*} x\right)\right| \leq\left\|T^{*} x\right\|\|x\|,
$$

we get

$$
c\|x\| \leq\|T x\|, c\|x\| \leq\left\|T^{*} x\right\| \text { for any } x \in \mathcal{H}
$$

This implies both T and T^{*} are injective, i.e., $\mathcal{N}(T)=\{0\}$ and $\mathcal{N}\left(T^{*}\right)=$ 0 . Next, recall $\overline{\mathcal{R}(T)}=\mathcal{N}\left(T^{*}\right)^{\perp}$. (This is a homework problem.) We obtain $\overline{\mathcal{R}(T)}=\mathcal{H}$. Now we prove $\mathcal{R}(T)$ is closed. To this end, we consider $y_{n}=T x_{n} \in \mathcal{R}(T)$ such that $y_{n} \rightarrow y$ in \mathcal{H}. We shall prove $y \in \mathcal{R}(T)$. By $c\left\|x_{n}-x_{m}\right\| \leq\left\|T x_{n}-T x_{m}\right\|$, we note $\left\{x_{n}\right\}$ is a Cauchy sequence in \mathcal{X}, and hence we may assume $x_{n} \rightarrow x$ in \mathcal{H}. By the continuity of T, we conclude $y_{n}=T x_{n} \rightarrow T x$, and hence $y=T x \in \mathcal{R}(T)$. Therefore $\mathcal{R}(T)=\mathcal{H}$. Hence T is injective and surjective, and then has an inverse. By $c\|x\| \leq\|T x\|$ for any $x \in \mathcal{H}$, we get $c\left\|T^{-1} y\right\| \leq\|y\|$ for any $y \in \mathcal{H}$. Therefore, $T^{-1} \in \mathcal{B}(\mathcal{H})$. (Note, we did not use the Banach Inverse Theorem.)

Solution of Problem 3. We first note that $\mathcal{N}(f)$ is a closed subspace of codimension 1 for any nonzero $f \in \mathcal{X}^{*}$.
(1) This is straightforward and is omitted.
(2) Let O be weakly open and $x_{0} \in O$ be an arbitrary point. Then there exist $f_{1}, \cdots, f_{n} \in \mathcal{X}^{*}$ such that

$$
x_{0}+\cap_{k=1}^{n}\left\{x \in \mathcal{X} ;\left|f_{k}(x)\right|<1\right\} \subset O .
$$

Take $r=\left(\sup _{1 \leq k \leq n}\left\{\left\|f_{k}\right\|\right\}\right)^{-1}$. Then we have

$$
B(0, r) \subset \cap_{k=1}^{n}\left\{x \in \mathcal{X} ;\left|f_{k}(x)\right|<1\right\} .
$$

This implies $B\left(x_{0}, r\right) \subset O$. Hence O is open (in the norm topology). The other two statements follow easily.
(3) We shall prove the following first: Let \mathcal{X} be a NVS and $f_{1}, \cdots, f_{n}, f \in$ \mathcal{X}^{*}. Then $f \in \operatorname{span}\left\{f_{1}, \cdots, f_{n}\right\}$ if and only if $\cap_{i=1}^{n} \mathcal{N}\left(f_{i}\right) \subset \mathcal{N}(f)$.
\Rightarrow Suppose $f=\sum_{i=1}^{n} c_{i} f_{i}$. For any $x \in \cap_{i=1}^{n} \mathcal{N}\left(f_{i}\right)$, we have $f_{i}(x)=$ 0 , and then $f(x)=0$, or $x \in \mathcal{N}(f)$.
\Leftarrow. We first consider whether

$$
\left(\cap_{i \neq n} \mathcal{N}\left(f_{i}\right)\right) \cap \mathcal{N}\left(f_{n}\right)^{c} \neq \emptyset .
$$

If $\cap_{i \neq n} \mathcal{N}\left(f_{i}\right) \subset \mathcal{N}\left(f_{n}\right)$, we simply drop f_{n} and consider $\left\{f_{1}, \cdots, f_{n-1}\right\}$. Otherwise, we consider whether

$$
\left(\cap_{i \neq n-1} \mathcal{N}\left(f_{i}\right)\right) \cap \mathcal{N}\left(f_{n-1}\right)^{c} \neq \emptyset .
$$

We continue this process. Therefore we may assume for any $k=$ $1, \cdots, n$

$$
\left(\cap_{i \neq k} \mathcal{N}\left(f_{i}\right)\right) \cap \mathcal{N}\left(f_{k}\right)^{c} \neq \emptyset .
$$

Hence there exists an $x_{k} \in\left(\cap_{i \neq k} \mathcal{N}\left(f_{i}\right)\right) \cap \mathcal{N}\left(f_{k}\right)^{c}$, or

$$
f_{i}\left(x_{k}\right)=0 \text { for } i \neq k, \quad f_{k}\left(x_{k}\right)=1 .
$$

For any $x \in \mathcal{X}$, consider $y=x-\sum_{i=1}^{n} f_{i}(x) x_{i}$. Then $f_{k}(y)=f_{k}(x)-$ $f_{k}(x)=0$, or $y \in \cap_{i=1}^{n} \mathcal{N}\left(f_{i}\right)$. By the assumption, $y \in \mathcal{N}(f)$, or $f(y)=0$. Hence we have $f(x)=\sum_{i=1}^{n} f_{i}(x) f\left(x_{i}\right)$, or $f=\sum_{i=1}^{n} f\left(x_{i}\right) f_{i}$.

Now we comeback to (3). We shall prove that any weakly open set containing 0 is unbounded. First, by the definition of weakly open set, there exist $f_{1}, \cdots, f_{n} \in \mathcal{X}^{*}$ such that

$$
\{x \in \mathcal{X} ;|f(x)|<1\} \subset O
$$

In particular, we have

$$
\cap_{i=1}^{n} \mathcal{N}\left(f_{i}\right) \subset O .
$$

If $\cap_{i=1}^{n} \mathcal{N}\left(f_{i}\right)=\{0\}$, then $\cap_{i=1}^{n} \mathcal{N}\left(f_{i}\right) \subset \mathcal{N}(f)$ for any $f \in \mathcal{X}^{*}$. This implies \mathcal{X}^{*} is spanned by f_{1}, \cdots, f_{n}, and hence finite dimensional. Then it is easy to see that \mathcal{X} is finite dimensional, which leads to a contradiction. Therefore, we conclude that $\cap_{i=1}^{n} \mathcal{N}\left(f_{i}\right)$ is a nontrivial subspace, and hence unbounded. So O is unbounded.
(4) Let \mathcal{M} be a closed subspace in \mathcal{X}. We shall prove that \mathcal{M}^{c} is weakly open. For any $x_{0} \notin \mathcal{M}$, there $\operatorname{holds} \operatorname{dist}\left(x_{0}, \mathcal{M}\right)>0$. By Hahn-Banach Theorem, there exists an $f \in \mathcal{X}^{*}$ such that $f \mid \mathcal{M}=0$ and $f\left(x_{0}\right)=1$. This implies $x_{0}+\{x \in \mathcal{X} ;|f(x)|<1\} \subset \mathcal{M}^{c}$, since $f\left(x_{0}+x\right)=f\left(x_{0}\right)+f(x)=1+f(x) \neq 0$ if $|f(x)|<1$. Hence \mathcal{M}^{c} is weakly open.
(5) We shall only prove the case $x=0$.
\Rightarrow Let $\left\{x_{m}\right\}$ be a sequence convergent to 0 weakly. Consider any weakly open subset O of 0 . Then there exist $f_{1}, \cdots, f_{n} \in \mathcal{X}^{*}$ such that

$$
\cap_{k=1}^{n}\left\{x \in \mathcal{X} ;\left|f_{k}(x)\right|<1\right\} \subset O
$$

By the weak convergence of $\left\{x_{m}\right\}$ to 0 , there holds $f_{k}\left(x_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$ for any $k=1, \cdots, n$. Then there exists an N such that $\left|f_{k}\left(x_{m}\right)\right|<1$ for any $m \geq N$ and any $k=1, \cdots, n$. This implies $x_{m} \in O$ for any $m \geq N$.
\Leftarrow Let $\left\{x_{m}\right\}$ be a sequence such that for any weakly open set O containing 0 there exists an N such that $x_{n} \in O$ for any $m \geq N$. For any $f \in \mathcal{X}^{*}$, we shall prove $f\left(x_{m}\right) \rightarrow 0$. To this end, we consider an arbitrary $\varepsilon>0$ and note that $O_{\varepsilon}=\{x \in \mathcal{X} ;|f(x)|<\varepsilon\}$ is weakly open by (1). Hence there exists an N such that for any $m \geq N$ there holds $x_{m} \in O_{\varepsilon}$, or $\left|f\left(x_{m}\right)\right|<\varepsilon$.

Solution of Problem 4. Set

$$
X=\left\{v \in C^{2}[0,1] ; v(0)=v(1)=v^{\prime}(0)=v^{\prime}(1)=0\right\} .
$$

For any $v \in X$, we multiply \bar{v} to the equation and integrate by parts to get

$$
\int_{0}^{1}\left[u^{\prime \prime} \bar{v}^{\prime \prime}+u \bar{v}\right] d x=\int_{0}^{1} f \bar{v} d x .
$$

For any $u, v \in X$, set

$$
(u, v)_{\mathcal{H}^{2}}=\int_{0}^{1}\left[u^{\prime \prime} \bar{v}^{\prime \prime}+u \bar{v}\right] d x
$$

This is an inner product in X, and it induces a norm

$$
\|u\|_{\mathcal{H}^{2}}=\left(\int_{0}^{1}\left[\left|u^{\prime \prime}\right|^{2}+|u|^{2}\right] d x\right)^{\frac{1}{2}}
$$

In the following, we also set

$$
\begin{aligned}
\|u\|_{\mathcal{L}^{2}} & =\left(\int_{0}^{1}|u|^{2} d x\right)^{\frac{1}{2}} \\
\|u\|_{\mathcal{H}^{1}} & =\left(\int_{0}^{1}\left[\left|u^{\prime}\right|^{2}+|u|^{2}\right] d x\right)^{\frac{1}{2}}
\end{aligned}
$$

and

$$
\mathcal{H}_{0}^{1}(0,1)=\left\{u \in A C[0,1] ; u^{\prime} \in \mathcal{L}^{2}(0,1), u(0)=u(1)=0\right\} .
$$

We proved that $\left(\mathcal{H}_{0}^{1}(0,1),(\cdot, \cdot)_{\mathcal{H}^{1}}\right)$ is a Hilbert space.

Step 1. We set

$$
\begin{aligned}
\mathcal{H}_{0}^{2}(0,1)= & \left\{u \in \mathcal{H}_{0}^{1}(0,1) ; u^{\prime} \in \mathcal{H}_{0}^{1}(0,1)\right\} \\
= & \left\{u \in A C[0,1] ; u^{\prime} \in A C[0,1], u^{\prime \prime} \in L^{2}(0,1),\right. \\
& \left.\quad u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0\right\}
\end{aligned}
$$

We claim $\left(\mathcal{H}_{0}^{2}(0,1),(\cdot, \cdot)_{\mathcal{H}^{2}}\right)$ is a Hilbert space. We only need to prove $\mathcal{H}_{0}^{2}(0,1)$ is complete with respect to the norm $\|\cdot\|_{\mathcal{H}^{2}}$.

Recall the estimate for any $u \in \mathcal{H}_{0}^{1}(0,1)$

$$
\|u\|_{\mathcal{L}^{2}} \leq\left\|u^{\prime}\right\|_{\mathcal{L}^{2}}
$$

This implies for $u \in \mathcal{H}_{0}^{2}(0,1)$

$$
\|u\|_{\mathcal{H}^{1}}+\left\|u^{\prime}\right\|_{\mathcal{H}^{1}} \leq 4\|u\|_{\mathcal{H}^{2}}
$$

Let $\left\{u_{n}\right\}$ be a Cauchy sequence in $\mathcal{H}_{0}^{2}(0,1)$. Then $\left\{u_{n}\right\}$ and $\left\{u_{n}^{\prime}\right\}$ are Cauchy in $\mathcal{H}_{0}^{1}(0,1)$. There exist $u, v \in \mathcal{H}_{0}^{1}(0,1)$ such that $u_{n} \rightarrow u$ and $u_{n}^{\prime} \rightarrow v$ in $\mathcal{H}_{0}^{1}(0,1)$. In particular, $u_{n}^{\prime} \rightarrow u^{\prime}$ and $u_{n}^{\prime} \rightarrow v$ in $\mathcal{L}^{2}(0,1)$. This implies $u^{\prime}=v$. Hence we have $u \in \mathcal{H}_{0}^{2}(0,1)$, and we can check easily $u_{n} \rightarrow u$ in $\mathcal{H}_{0}^{2}(0,1)$.

Remark. We may prove directly that the completion of X under the norm $\|\cdot\|_{\mathcal{H}^{2}}$ is exactly $\mathcal{H}_{0}^{2}(0,1)$.

Step 2. Define

$$
F(v)=\int_{0}^{1} v \bar{f} d x \text { for any } v \in \mathcal{H}_{0}^{2}(0,1)
$$

Then obviously F is a linear functional on $\mathcal{H}_{0}^{2}(0,1)$. Next, we have by Schwartz inequality

$$
|F(v)| \leq\|f\|_{\mathcal{L}^{2}}\|v\|_{\mathcal{L}^{2}} \leq\|f\|_{\mathcal{L}^{2}}\|v\|_{\mathcal{H}_{0}^{2}(0,1)}
$$

Hence F is a bounded linear functional on $\mathcal{H}_{0}^{2}(0,1)$. By Riesz Representation Theorem, there exists a unique $u \in \mathcal{H}_{0}^{2}(0,1)$ such that $(u, \varphi)_{\mathcal{H}_{0}^{2}(0,1)}=F(\varphi)$ for any $\varphi \in \mathcal{H}_{0}^{2}(0,1)$, i.e.,

$$
\int_{0}^{1}\left[u^{\prime \prime} \bar{\varphi}^{\prime \prime}+u \bar{\varphi}\right] d x=\int_{0}^{1} f \bar{\varphi} d x \text { for any } \varphi \in \mathcal{H}_{0}^{2}(0,1) .
$$

Step 3. By setting $v=f-u$, we obtain

$$
\begin{equation*}
\int_{0}^{1} u^{\prime \prime} \bar{\varphi}^{\prime \prime} d x=\int_{0}^{1} v \bar{\varphi} d x \text { for any } \varphi \in \mathcal{H}_{0}^{2}(0,1) \tag{1}
\end{equation*}
$$

We shall prove $u^{\prime \prime} \in A C, u^{(3)} \in A C, u^{(4)} \in L^{2}$ and $u^{(4)}=v$. The crucial step is the following. We shall prove, under the assumption (1),
there exists a $w \in \mathcal{L}^{2}(0,1)$ such that

$$
\begin{equation*}
\int_{0}^{1} u^{\prime \prime} \bar{\psi}^{\prime} d x=\int_{0}^{1} w \psi d x \text { for any } \psi \in \mathcal{H}_{0}^{1}(0,1) \tag{2}
\end{equation*}
$$

Suppose this is already done. We conclude from (2) that $u^{\prime \prime} \in$ $A C(0,1)$ and $u^{(3)}=-w \in \mathcal{L}^{2}$. Now we may integrate by parts the left side of (1) to get

$$
\int_{0}^{1} u^{(3)} \bar{\varphi}^{\prime} d x=-\int_{0}^{1} v \bar{\varphi} d x \text { for any } \varphi \in \mathcal{H}_{0}^{2}(0,1)
$$

Then we get $u^{(3)} \in A C(0,1)$ and $u^{(4)}=v$, or $u^{(4)}+u=f$.
To prove (2), we set $g(x)=\int_{1 / 2}^{x} v(t) d t$. Then (1) implies

$$
\begin{equation*}
\int_{0}^{1} u^{\prime \prime} \bar{\varphi}^{\prime \prime} d x=-\int_{0}^{1} g \bar{\varphi}^{\prime} d x \text { for any } \varphi \in \mathcal{H}_{0}^{2}(0,1) \tag{3}
\end{equation*}
$$

Fix a $\phi \in \mathcal{H}_{0}^{2}(0,1)$ such that $\int_{0}^{1} \phi=1$. For any $\psi \in \mathcal{H}_{0}^{1}(0,1)$, consider

$$
\varphi(x)=\int_{0}^{x} \psi-\int_{0}^{1} \psi \int_{0}^{x} \phi
$$

It is easy to check that $\varphi \in \mathcal{H}_{0}^{2}(0,1)$. Substituting such a φ in (3), we get

$$
\int_{0}^{1} u^{\prime \prime} \bar{\psi}^{\prime}=\int_{0}^{1}\left(-g+\int_{0}^{1}\left(u^{\prime \prime} \bar{\phi}^{\prime}\right)+\int_{0}^{1}(g \bar{\phi})\right) \bar{\psi}
$$

This finishes the proof of (2) with $w=-g+\int_{0}^{1}\left(u^{\prime \prime} \bar{\phi}^{\prime}\right)+\int_{0}^{1}(g \bar{\phi})$.

