PROJECT: OPERATORS IN HILBERT SPACES

Prove all the following lemmas, theorems and examples.

1. COMPACT OPERATORS
In the following, all spaces X', Y and Z are assumed to be Hilbert spaces.

Lemma 1.1. Let A : X — Y be a linear operator. Then the following statements are
equivalent.

(1) A(By) is sequentially compact in ) where By = {x € X ||z|| < 1}.

(2) A(B) is sequentially compact in ) where B is any bounded set in X .

(8) For any bounded sequence {x,} in X, {Ax,} has a convergent subsequence in Y.

Definition 1.2. Such a linear operator is called compact. Let C(X,)) = all compact
linear operators from X to ).

Lemma 1.3. There hold the following results.

(1) C(X,Y) C B(X,)).

(2) C(X,Y) is a linear subspace and closed in B(X,Y).

(3) If AeC(X,)),B e B, 2), then BAcC(X,2). IfAec B(X,Y),BeC(Y,2),
then BA € C(X, Z).

(4) Let A € C(X,Y) and M be a closed subspace in X. Then AIM € C(M, ).

(5) Let A€ C(X,Y). Then R(A) is separable.

Theorem 1.4. Let A € B(X,)). Then A€ C(X,)) if and only if A* € C(Y, X).
Hint: If A € C(X,Y), then AA* € C(V,)).

Now we provide several methods to verify whether a bounded linear operator is com-
pact.

Definition 1.5. An operator A € B(X,)) is completely continuous if for any x,, — =
weakly in X there holds Az, — Az in norm in ).

Lemma 1.6. Let A € B(X,)Y). Then A € C(X,)) if and only if A is completely
continuous.

Definition 1.7. A linear operator A : X — Y has a finite rank if R(A) is finite dimen-
sional. Let Co(X,Y) = all linear operators of finite rank.

Operators in Co(X,)) have a simple formula.
Lemma 1.8. Let A € B(X,Y). Then A € Co(X,Y) if and only if A* € Co(Y, X).

Hint: Let A € Co(X,Y). Then there exist {x1, -+ ,2,} C X and {y1, -+ ,yn} C Y
such that

n
Az = Z(HT,%‘)% for any z € X.
i=1
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Lemma 1.9. (1) Co(X,)) is a linear space and Co(X,Y) C C(X,)).

(2) Co(X,)) is dense in C(X,)Y), i.e., Co(X,)) =C(X,)).
Ezample 1.10. Let Q be a bounded measurable subset in R” and K € £2(Q2 x ). Define
A L2() — L2(Q) by
Au(x) = / K (z,y)u(y)dy for any u € L*(9).
Q
Then A is a compact operator on £2(€2).

2. SELF-AJOINT OPERATORS

In this section we always assume that X is a C-Hilbert space.

Definition 2.1. A € B(X) is self-adjoint if A = A*, i.e., (Az,y) = (x, Ay) for any x,y €
X.

Lemma 2.2. Let A € B(X). Then A is self-adjoint if and only if (Axz,z) € R for any
re k.

Hint: Consider (A(z + cy),z + cy) for c=1 and ¢ = 1.
The preceding result is false if X is only assumed to be an R-Hilbert space. Indeed
for any operator A in an R-Hilbert space, (Az,y) € R.

Lemma 2.3. Let A € B(X) be self-adjoint. Then
[A]l = sup{[(Az, )[; [l]| = 1}
Lemma 2.4. Let A € B(X) be self-adjoint and X\ € C. Then X\ — A is invertible in
B(X) if and only if there exists a constant ¢ > 0 such that
(AL = T)z|| > c||z|| for any x € X.
For a self-adjoint operator A € B(X'), we define

m_= inf (Az,xz), my= sup (Az,x).
z€X,||z||=1 X, ||z =1
Theorem 2.5. Let A € B(X) be self-adjoint.
(1) For any A ¢ R the operator \XI — A is invertible in B(X).
(2) For any A € R\ [m_,my], \I — A is invertible in B(X).

Lemma 2.6. Let A € B(X) be self-adjoint such that (Axz,xz) > 0 for any x € X. Then
(1) [(Az, y)|? < (Az,2)(Ay,y) for any z,y € X.
(2) [ 4[> < | Al|(Az,2) for any z € X.

Corollary 2.7. Let A € B(X) be self-adjoint. Then m4I — A and m_I — A are not
invertible in B(X).

Theorem 2.8. Let A € B(X) be self-adjoint.

(1) If there exists an x— € X with ||x_|| = 1 and (Az_,z_) = m_, then m_ is an
eigenvalue of A and x_ is a corresponding eigenvector.
(1) If there exists an x4 € X with ||x4| = 1 and (Azxy,zy) = my, then my is an

eigenvalue of A and x4 is a corresponding eigenvector.



