PROJECT: OPERATORS IN HILBERT SPACES

Prove all the following lemmas, theorems and examples.

1. Compact Operators

In the following, all spaces \mathcal{X} , \mathcal{Y} and \mathcal{Z} are assumed to be Hilbert spaces.

Lemma 1.1. Let $A : \mathcal{X} \to \mathcal{Y}$ be a linear operator. Then the following statements are equivalent.

(1) $A(B_1)$ is sequentially compact in \mathcal{Y} where $B_1 = \{x \in \mathcal{X}; \|x\| \le 1\}$.

(2) A(B) is sequentially compact in \mathcal{Y} where B is any bounded set in \mathcal{X} .

(3) For any bounded sequence $\{x_n\}$ in \mathcal{X} , $\{Ax_n\}$ has a convergent subsequence in \mathcal{Y} .

Definition 1.2. Such a linear operator is called compact. Let $\mathcal{C}(\mathcal{X}, \mathcal{Y}) = \text{all compact}$ linear operators from \mathcal{X} to \mathcal{Y} .

Lemma 1.3. There hold the following results.

(1) $\mathcal{C}(\mathcal{X}, \mathcal{Y}) \subseteq \mathcal{B}(\mathcal{X}, \mathcal{Y}).$

(2) $\mathcal{C}(\mathcal{X}, \mathcal{Y})$ is a linear subspace and closed in $\mathcal{B}(\mathcal{X}, \mathcal{Y})$.

(3) If $A \in \mathcal{C}(\mathcal{X}, \mathcal{Y}), B \in \mathcal{B}(\mathcal{Y}, \mathcal{Z})$, then $BA \in \mathcal{C}(\mathcal{X}, \mathcal{Z})$. If $A \in \mathcal{B}(\mathcal{X}, \mathcal{Y}), B \in \mathcal{C}(\mathcal{Y}, \mathcal{Z})$, then $BA \in \mathcal{C}(\mathcal{X}, \mathcal{Z})$.

(4) Let $A \in \mathcal{C}(\mathcal{X}, \mathcal{Y})$ and \mathcal{M} be a closed subspace in \mathcal{X} . Then $A | \mathcal{M} \in \mathcal{C}(\mathcal{M}, \mathcal{Y})$. (5) Let $A \in \mathcal{C}(\mathcal{X}, \mathcal{Y})$. Then $\overline{\mathcal{R}(A)}$ is separable.

Theorem 1.4. Let $A \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$. Then $A \in \mathcal{C}(\mathcal{X}, \mathcal{Y})$ if and only if $A^* \in \mathcal{C}(\mathcal{Y}, \mathcal{X})$.

Hint: If $A \in \mathcal{C}(\mathcal{X}, \mathcal{Y})$, then $AA^* \in \mathcal{C}(\mathcal{Y}, \mathcal{Y})$.

Now we provide several methods to verify whether a bounded linear operator is compact.

Definition 1.5. An operator $A \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ is completely continuous if for any $x_n \rightharpoonup x$ weakly in \mathcal{X} there holds $Ax_n \rightarrow Ax$ in norm in \mathcal{Y} .

Lemma 1.6. Let $A \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$. Then $A \in \mathcal{C}(\mathcal{X}, \mathcal{Y})$ if and only if A is completely continuous.

Definition 1.7. A linear operator $A : \mathcal{X} \to \mathcal{Y}$ has a finite rank if $\mathcal{R}(A)$ is finite dimensional. Let $\mathcal{C}_0(\mathcal{X}, \mathcal{Y}) =$ all linear operators of finite rank.

Operators in $\mathcal{C}_0(\mathcal{X}, \mathcal{Y})$ have a simple formula.

Lemma 1.8. Let $A \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$. Then $A \in \mathcal{C}_0(\mathcal{X}, \mathcal{Y})$ if and only if $A^* \in \mathcal{C}_0(\mathcal{Y}, \mathcal{X})$.

Hint: Let $A \in \mathcal{C}_0(\mathcal{X}, \mathcal{Y})$. Then there exist $\{x_1, \cdots, x_n\} \subset \mathcal{X}$ and $\{y_1, \cdots, y_n\} \subset \mathcal{Y}$ such that

$$Ax = \sum_{i=1}^{n} (x, x_i) y_i$$
 for any $x \in \mathcal{X}$.

Lemma 1.9. (1) $C_0(\mathcal{X}, \mathcal{Y})$ is a linear space and $C_0(\mathcal{X}, \mathcal{Y}) \subseteq C(\mathcal{X}, \mathcal{Y})$. (2) $C_0(\mathcal{X}, \mathcal{Y})$ is dense in $C(\mathcal{X}, \mathcal{Y})$, i.e., $\overline{C_0(\mathcal{X}, \mathcal{Y})} = C(\mathcal{X}, \mathcal{Y})$.

Example 1.10. Let Ω be a bounded measurable subset in \mathbb{R}^n and $K \in \mathcal{L}^2(\Omega \times \Omega)$. Define $A : \mathcal{L}^2(\Omega) \to \mathcal{L}^2(\Omega)$ by

$$Au(x) = \int_{\Omega} K(x, y)u(y)dy$$
 for any $u \in \mathcal{L}^{2}(\Omega)$.

Then A is a compact operator on $\mathcal{L}^2(\Omega)$.

2. Self-Ajoint Operators

In this section we always assume that \mathcal{X} is a \mathbb{C} -Hilbert space.

Definition 2.1. $A \in \mathcal{B}(\mathcal{X})$ is self-adjoint if $A = A^*$, i.e., (Ax, y) = (x, Ay) for any $x, y \in \mathcal{X}$.

Lemma 2.2. Let $A \in \mathcal{B}(\mathcal{X})$. Then A is self-adjoint if and only if $(Ax, x) \in \mathbb{R}$ for any $x \in \mathcal{X}$.

Hint: Consider (A(x + cy), x + cy) for c = 1 and c = i.

The preceding result is false if \mathcal{X} is only assumed to be an \mathbb{R} -Hilbert space. Indeed for any operator A in an \mathbb{R} -Hilbert space, $(Ax, y) \in \mathbb{R}$.

Lemma 2.3. Let $A \in \mathcal{B}(\mathcal{X})$ be self-adjoint. Then

$$||A|| = \sup\{|(Ax, x)|; ||x|| = 1\}.$$

Lemma 2.4. Let $A \in \mathcal{B}(\mathcal{X})$ be self-adjoint and $\lambda \in \mathbb{C}$. Then $\lambda I - A$ is invertible in $\mathcal{B}(\mathcal{X})$ if and only if there exists a constant c > 0 such that

$$\|(\lambda I - T)x\| \ge c \|x\| \text{ for any } x \in \mathcal{X}.$$

For a self-adjoint operator $A \in \mathcal{B}(\mathcal{X})$, we define

$$m_{-} = \inf_{x \in \mathcal{X}, \|x\|=1} (Ax, x), \quad m_{+} = \sup_{x \in \mathcal{X}, \|x\|=1} (Ax, x).$$

Theorem 2.5. Let $A \in \mathcal{B}(\mathcal{X})$ be self-adjoint.

(1) For any $\lambda \notin \mathbb{R}$ the operator $\lambda I - A$ is invertible in $\mathcal{B}(\mathcal{X})$.

(2) For any $\lambda \in \mathbb{R} \setminus [m_-, m_+]$, $\lambda I - A$ is invertible in $\mathcal{B}(\mathcal{X})$.

Lemma 2.6. Let $A \in \mathcal{B}(\mathcal{X})$ be self-adjoint such that $(Ax, x) \ge 0$ for any $x \in \mathcal{X}$. Then (1) $|(Ax, y)|^2 \le (Ax, x)(Ay, y)$ for any $x, y \in \mathcal{X}$.

(2) $||Ax||^2 \le ||A|| (Ax, x)$ for any $x \in \mathcal{X}$.

Corollary 2.7. Let $A \in \mathcal{B}(\mathcal{X})$ be self-adjoint. Then $m_+I - A$ and $m_-I - A$ are not invertible in $\mathcal{B}(\mathcal{X})$.

Theorem 2.8. Let $A \in \mathcal{B}(\mathcal{X})$ be self-adjoint.

(1) If there exists an $x_{-} \in \mathcal{X}$ with $||x_{-}|| = 1$ and $(Ax_{-}, x_{-}) = m_{-}$, then m_{-} is an eigenvalue of A and x_{-} is a corresponding eigenvector.

(1) If there exists an $x_+ \in \mathcal{X}$ with $||x_+|| = 1$ and $(Ax_+, x_+) = m_+$, then m_+ is an eigenvalue of A and x_+ is a corresponding eigenvector.