
PROJECT: OPERATORS IN HILBERT SPACES

Prove all the following lemmas, theorems and examples.

1. Compact Operators

In the following, all spaces X , Y and Z are assumed to be Hilbert spaces.

Lemma 1.1. Let A : X → Y be a linear operator. Then the following statements are
equivalent.

(1) A(B1) is sequentially compact in Y where B1 = {x ∈ X ; ‖x‖ ≤ 1}.
(2) A(B) is sequentially compact in Y where B is any bounded set in X .
(3) For any bounded sequence {xn} in X , {Axn} has a convergent subsequence in Y.

Definition 1.2. Such a linear operator is called compact. Let C(X ,Y) = all compact
linear operators from X to Y.

Lemma 1.3. There hold the following results.
(1) C(X ,Y) ⊆ B(X ,Y).
(2) C(X ,Y) is a linear subspace and closed in B(X ,Y).
(3) If A ∈ C(X ,Y), B ∈ B(Y,Z), then BA ∈ C(X ,Z). If A ∈ B(X ,Y), B ∈ C(Y,Z),

then BA ∈ C(X ,Z).
(4) Let A ∈ C(X ,Y) and M be a closed subspace in X . Then A|M ∈ C(M,Y).
(5) Let A ∈ C(X ,Y). Then R(A) is separable.

Theorem 1.4. Let A ∈ B(X ,Y). Then A ∈ C(X ,Y) if and only if A∗ ∈ C(Y,X ).

Hint: If A ∈ C(X ,Y), then AA∗ ∈ C(Y,Y).
Now we provide several methods to verify whether a bounded linear operator is com-

pact.

Definition 1.5. An operator A ∈ B(X ,Y) is completely continuous if for any xn ⇀ x
weakly in X there holds Axn → Ax in norm in Y.

Lemma 1.6. Let A ∈ B(X ,Y). Then A ∈ C(X ,Y) if and only if A is completely
continuous.

Definition 1.7. A linear operator A : X → Y has a finite rank if R(A) is finite dimen-
sional. Let C0(X ,Y) = all linear operators of finite rank.

Operators in C0(X ,Y) have a simple formula.

Lemma 1.8. Let A ∈ B(X ,Y). Then A ∈ C0(X ,Y) if and only if A∗ ∈ C0(Y,X ).

Hint: Let A ∈ C0(X ,Y). Then there exist {x1, · · · , xn} ⊂ X and {y1, · · · , yn} ⊂ Y
such that

Ax =
n∑

i=1

(x, xi)yi for any x ∈ X .
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Lemma 1.9. (1) C0(X ,Y) is a linear space and C0(X ,Y) ⊆ C(X ,Y).
(2) C0(X ,Y) is dense in C(X ,Y), i.e., C0(X ,Y) = C(X ,Y).

Example 1.10. Let Ω be a bounded measurable subset in Rn and K ∈ L2(Ω×Ω). Define
A : L2(Ω) → L2(Ω) by

Au(x) =
∫

Ω
K(x, y)u(y)dy for any u ∈ L2(Ω).

Then A is a compact operator on L2(Ω).

2. Self-Ajoint Operators

In this section we always assume that X is a C-Hilbert space.

Definition 2.1. A ∈ B(X ) is self-adjoint if A = A∗, i.e., (Ax, y) = (x,Ay) for any x, y ∈
X .

Lemma 2.2. Let A ∈ B(X ). Then A is self-adjoint if and only if (Ax, x) ∈ R for any
x ∈ X .

Hint: Consider (A(x + cy), x + cy) for c = 1 and c = i.
The preceding result is false if X is only assumed to be an R-Hilbert space. Indeed

for any operator A in an R-Hilbert space, (Ax, y) ∈ R.

Lemma 2.3. Let A ∈ B(X ) be self-adjoint. Then

‖A‖ = sup{|(Ax, x)|; ‖x‖ = 1}.
Lemma 2.4. Let A ∈ B(X ) be self-adjoint and λ ∈ C. Then λI − A is invertible in
B(X ) if and only if there exists a constant c > 0 such that

‖(λI − T )x‖ ≥ c‖x‖ for any x ∈ X .

For a self-adjoint operator A ∈ B(X ), we define

m− = inf
x∈X ,‖x‖=1

(Ax, x), m+ = sup
x∈X ,‖x‖=1

(Ax, x).

Theorem 2.5. Let A ∈ B(X ) be self-adjoint.
(1) For any λ /∈ R the operator λI −A is invertible in B(X ).
(2) For any λ ∈ R \ [m−,m+], λI −A is invertible in B(X ).

Lemma 2.6. Let A ∈ B(X ) be self-adjoint such that (Ax, x) ≥ 0 for any x ∈ X . Then
(1) |(Ax, y)|2 ≤ (Ax, x)(Ay, y) for any x, y ∈ X .
(2) ‖Ax‖2 ≤ ‖A‖(Ax, x) for any x ∈ X .

Corollary 2.7. Let A ∈ B(X ) be self-adjoint. Then m+I − A and m−I − A are not
invertible in B(X ).

Theorem 2.8. Let A ∈ B(X ) be self-adjoint.
(1) If there exists an x− ∈ X with ‖x−‖ = 1 and (Ax−, x−) = m−, then m− is an

eigenvalue of A and x− is a corresponding eigenvector.
(1) If there exists an x+ ∈ X with ‖x+‖ = 1 and (Ax+, x+) = m+, then m+ is an

eigenvalue of A and x+ is a corresponding eigenvector.


