Read sections 1.1-1.4 and 2.2 from Greene and Krantz.

Solve the following problems.

1. From Green and Krantz. Pages 22-29: 9, 32, 34, 49 (prove only the $\frac{\partial}{\partial z}$ formula).
2. Since \mathbf{C} is really just \mathbf{R}^{2} dressed up with a method for multiplying points together, we can think of \mathbf{C} as either a two dimensional real vector space (with e.g. basis $\{(1,0),(0,1)\}$) or a one dimensional complex vector space (with e.g. basis $1+0 i$). (If you've never encountered one before, a complex vector space is a vector space in which we're allowed to multiply vectors by complex numbers.)

Here we contrast the two corresponding notions of linearity. Recall that a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is real linear if

1. $T(z)+T(w)=T(z+w)$;
2. $T(\lambda z)=\lambda T(z)$;
for every $z, w \in \mathbf{R}^{2} \cong \mathbf{C}$ and every $\lambda \in \mathbf{R}$. Likewise T is complex linear if property 1 . holds unchanged, but property 2 . is strengthened to hold for every $\lambda \in \mathbf{C}$.

- Show that any real linear transformation can be written in the form $T(z)=A z+B \bar{z}$. Express A and B in terms of the (real, 2×2) matrix for T and vice versa.
- Show that a real linear T is complex linear if and only if $T(z)=A z$ for for all z-i.e. B vanishes. What form must the matrix for T assume in this case?
- Express the determinant of the matrix for T in terms of A and B. What condition on A and B guarantees that T is invertible?

3. (From Ahlfor's book) Find all solutions $z \in \mathbf{C}$ of $\bar{z}=z^{n}$.
