Assignment 12 (Due the Friday after Thanksgiving) Math 605, Fall '00

Read sections 7.8–7.9 from Greene and Krantz.

Solve the following problems.

1. From the textbook. Pages 244–254: 19 (try to avoid using holomorphic functions), 47 (to make life easier, assume that F is *conformal*), 73 (note that parts (d) and (e) are closely related to problem 3 below)

- 2. (A Crash Course in Conjugate Differentials) Recall the following facts:
 - (From this class) If $U \subset \mathbf{C}$ is open and $f : U \to \mathbf{C}$ is holomorphic, then f has a holomorphic antiderivative F on U if and only if $\int_{\gamma} f(z) dz = 0$ around every piecewise smooth closed curve $\gamma : [a, b] \to U$. Given $F(z_0)$ for some $z_0 \in U$, we obtain $F(z_1)$ by choosing a path from z_0 to z_1 and setting

$$F(z_1) = F(z_0) + \int_{\gamma} f(z) \, dz.$$

• (From vector calculus) If $U \subset \mathbf{R}^2$ is open, $h : U \to \mathbf{R}^2$ is C^1 , and $\gamma : [a, b] \to U$ is a piecewise smooth curve, then

$$h(\gamma(b)) - h(\gamma(a)) = \int_{\gamma} h_x \, dx + h_y \, dy.$$

The "1-form" $h_x dx + h_y dy$ is collectively abbreviated as dh (the differential of h). The conjugate of a 1-form $\omega = A dx + B dy$ is the 1-form $*\omega \stackrel{\text{def}}{=} -B dx + A dy$.

Use these to prove the following for $h: U \to \mathbf{R}$ harmonic.

- h has a harmonic conjugate $h^*: U \to \mathbf{C}$ if and only if $\int_{\gamma} *dh = 0$ for every piecewise smooth closed curve $\gamma: [a, b] \to U$.
- If $\gamma_1, \gamma_2: [a, b] \to U$ are homologous closed curves, then

$$\int_{\gamma_1} *dh = \int_{\gamma_2} *dh$$

• If $h : A \to \mathbf{C}$ is harmonic, where $A = \{z \in \mathbf{C} : R_1 < |z| < R_2\}$ is an annulus, then for every r between R_1 and R_2

$$\int_0^{2\pi} h(re^{i\theta}) \, d\theta = \alpha \log r + \beta,$$

where $\alpha, \beta \in \mathbf{R}$ are constants and

$$\alpha = \int_{|z|=r} *dh$$

(*Hint: consider the difference* $h(z) - \alpha \log |z|$ for appropriately chosen α .)

• Suppose that $h : D^*(0,1) \to \mathbf{R}$ is harmonic and bounded. Show that h extends to a harmonic function on D(0,1). What happens if we assume only that h is bounded above?