Assignment 2
Math 605, Fall '00

Read sections 2.1, 2.3-2.4, and 3.2 from Greene and Krantz.

Solve the following problems.

1. Let $U \subset \mathbf{C}$ be connected and open and $u: U \rightarrow \mathbf{R}, f: U \rightarrow \mathbf{C}$ be an harmonic and an analytic function, respectively. Show that the harmonic conjugate for u and the anti-derivative for f are unique (if they exist) up to additive constants on U.
2. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be linear.

- Show that the following two conditions are equivalent
- there exists a constant $r>0$ such that $\|T(v)\|=r\|v\|$ for every vector $v \in \mathbf{R}^{n}$.
- The angle $\angle(v, w)$ is the same as $\angle(T(v), T(w))$ for every $v, w \in \mathbf{R}^{n}$.
- T is called conformal if either (and hence both) of the above two conditions hold and T preserves orientation-i.e. has matrix with positive determinant. Show that $T: \mathbf{R}^{2} \rightarrow$ \mathbf{R}^{2} is conformal if and only if it's complex linear and invertible.
- Show that if $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is conformal, it can be factored into a 'scaling' times a 'rotation'-i.e. the matrix for T factors as

$$
\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

What is the relationship between r, θ and A ?
3. Complete the following steps in a discussion of the antiderivative for $1 / z$.

- Verify that $u(z)=\log |z|$ is harmonic when $z \neq 0$ and that $v(z)=\tan ^{-1}(y / x)$ is a harmonic conjugate for $\log |z|$ when $z=x+i y$ with $x \neq 0$.
- Show that the domain of v can be extended to give a harmonic conjugate for $\log |z|$ on $\mathbf{C} \backslash(-\infty, 0]$.
- Show that $\log z \stackrel{\text { def }}{=} u+i v$ is an antiderivative for $1 / z$. This function is called the principle branch of the logarithm function.
- Show that $1 / z$ cannot have an antiderivative defined on all of $\mathbf{C} \backslash\{0\}$.
- Show that with appropriate restrictions on domain, e^{z} and $\log z$ are inverse functions of one another.

4. Let $U, V \subset \mathbf{C}$ be open sets, $f: U \rightarrow V$ complex analytic, and $u: V \rightarrow \mathbf{R}$ harmonic. Show that $u \circ f$ is harmonic. (Hint: an enlightened proof avoids direct use of the chain rule.)
5. Suppose that $U \subset \mathbf{C}$ is open and $f: U \rightarrow \mathbf{C}$ is complex differentiable (not necessarily C^{1}) at $z_{0} \in U$. Show by letting $h \rightarrow 0$ from different directions in the limit defining $f^{\prime}\left(z_{0}\right)$ that f satisfies the Cauchy-Riemann equations at z_{0}. That is, if $f=u+i v$, show $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ at z_{0}.
