Assignment 6 Math 605, Fall '00

Read sections 4.2–4.7 from Greene and Krantz.

Solve the following problems.

- 1. From the textbook. Pages 147–158: 33.
- 2. Conformality of the stereographic projection.
 - Show that the stereographic projection $\pi: S^2 \to \overline{\mathbf{C}}$ is conformal. That is, show that if $p \in S^2$ (don't worry about the case where p = (0, 0, 1)), then $||D\pi_p(v)|| = r(p)||v||$ for every vector $v \in \mathbf{R}^3$ tangent to S^2 at p and some r(p) independent of v.
 - Give a formula for r(p) in terms of the image $z = \pi(p)$ instead of p. Given a C^1 curve $\tilde{\gamma} : [a, b] \to S^2$ and its image $\gamma = \pi \circ \gamma : [a, b] \to \mathbf{C}$, how would you express the length of $\tilde{\gamma}$ as an integral over γ ?

3. Complex analysts tend to lump lines and circles in **C** into the same category. Think like a complex analyst and show that the stereographic projection maps a circle S on S^2 to

- a circle in **C** if $(0, 0, 1) \notin S$; and
- a line in \mathbf{C} if $(0,0,1) \in S$.

It might help to remember that every circle on S^2 is obtained by intersecting S^2 with a plane.

4. Homogeneous coordinates for the Riemann Sphere. Consider the quotient space $\mathbf{P}^1 \stackrel{\text{def}}{=} (\mathbf{C}^2 \setminus \{0\}) / \sim$, where $(z_1, w_1) \sim (z_2, w_2)$ if and only if $z_1 w_2 = z_2 w_1$ —i.e. if either pair is a (possibly complex) multiple of the other.

- Show that the map $\pi : (\mathbf{C}^2 \setminus \{0\}) \to \overline{\mathbf{C}}$ given by $\pi(z, w) = z/w$ ($= \infty$ if w = 0) induces to a well-defined homeomorphism $\tilde{\pi} : \mathbf{P}^1 \to \overline{\mathbf{C}}$.
- A homogeneous map of \mathbf{C}^2 is a map $F: \mathbf{C}^2 \to \mathbf{C}^2$ such that

$$F(z, w) = (F_1(z, w), F_2(z, w))$$

where F_1 and F_2 are homogeneous polynomials of the same degree. It turns out that for any rational function $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$, one can find a homogeneous map $F: \mathbb{C}^2 \to \mathbb{C}^2$ such that $f \circ \pi = \pi \circ F$. Illustrate this fact using a reasonably generic example f of a rational map.

• Show (again by example) that one can likewise associate to each homogeneous map $F: \mathbb{C}^2 \to \mathbb{C}^2$ a rational map $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$