Read sections 4.7–5.5 from Greene and Krantz.

Solve the following problems.

- 1. From the textbook. Pages 147–158: 29bh,
- **2.** The Laurent series for a holomorphic function depends on more than where you center your annulus. Consider, for instance, the function $f(z) = 1/\sin z$.
 - Compute the principle part of the Laurent series for f(z) on $D^*(0,\pi)$.
 - Find a rational function R(z) such that $1/\sin z R(z)$ has removable singularities on on $|z| < 2\pi$.
 - Compute the coefficients of the negative powers of z in the Laurent series expansion for $1/\sin z$ on the annulus $\{\pi < |z| < 2\pi\}$.
- **3.** Suppose that $U \subset \mathbf{C}$ is homologically trivial and that $f: U \to \mathbf{C}$ is holomorphic and non-vanishing at every point in U. Show that for every $k \in \mathbf{N}$, there exists a holomorphic function $g: U \to \mathbf{C}$ such that $f = g^k$.

Not for credit (but I'd be happy to check your solution anyhow): The annulus $A = \{1 < |z| < 2\}$ is not homologically trivial. Nevertheless, some non-vanishing holomorphic functions $f: A \to \mathbf{C}$ admit square roots—i.e. holomorphic functions $g: A \to \mathbf{C}$ such that $f = g^2$. $f(z) = z^{-2}$ is an obvious example.

- Give a necessary and sufficient condition for a non-vanishing holomorphic function $f:A\to {\bf C}$ to have a kth root.
- Use your condition to show that $f(z) = \frac{z+10}{z^2+1}$ admits a square root on A.