Assignment 7

Math 605, Fall '00

Read sections 4.7-5.5 from Greene and Krantz.

Solve the following problems.

1. From the textbook. Pages 147-158: 29bh,
2. The Laurent series for a holomorphic function depends on more than where you center your annulus. Consider, for instance, the function $f(z)=1 / \sin z$.

- Compute the principle part of the Laurent series for $f(z)$ on $D^{*}(0, \pi)$.
- Find a rational function $R(z)$ such that $1 / \sin z-R(z)$ has removable singularities on on $|z|<2 \pi$.
- Compute the coefficients of the negative powers of z in the Laurent series expansion for $1 / \sin z$ on the annulus $\{\pi<|z|<2 \pi\}$.

3. Suppose that $U \subset \mathbf{C}$ is homologically trivial and that $f: U \rightarrow \mathbf{C}$ is holomorphic and non-vanishing at every point in U. Show that for every $k \in \mathbf{N}$, there exists a holomorphic function $g: U \rightarrow \mathbf{C}$ such that $f=g^{k}$.

Not for credit (but I'd be happy to check your solution anyhow): The annulus $A=\{1<$ $|z|<2\}$ is not homologically trivial. Nevertheless, some non-vanishing holomorphic functions $f: A \rightarrow \mathbf{C}$ admit square roots-i.e. holomorphic functions $g: A \rightarrow \mathbf{C}$ such that $f=g^{2}$. $f(z)=z^{-2}$ is an obvious example.

- Give a necessary and sufficient condition for a non-vanishing holomorphic function f : $A \rightarrow \mathbf{C}$ to have a k th root.
- Use your condition to show that $f(z)=\frac{z+10}{z^{2}+1}$ admits a square root on A.

