## Assignment 9

Math 605, Fall '00

Read sections 6.1-6.3 from Greene and Krantz.

Solve the following problems.

1. Recall the quotient map $\pi: \mathbf{C}^{2} \backslash\{\mathbf{0}\} \rightarrow \overline{\mathbf{C}}$ introduced in Homework 6, problem 4. Let $T \in \operatorname{Aut}(\mathbf{C})$ be a linear fractional transformation and $\tilde{T}: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ the associated linear transformation.

- Show that $p \in \mathbf{C}^{2} \backslash\{0\}$ is an eigenvector of $\tilde{T}$, if and only if $z=\pi(p)$ is a fixed point of $T$-i.e. $T(z)=z$.
- Show that any linear fractional transformation $T$ can be conjugated by another linear fractional transformation $S$ so that $S \circ T \circ S^{-1}(z)$ is either $a z$ for some $a \in \mathbf{C} \backslash\{0\}$ or $z+1$.
- Suppose that $T(z)=\frac{z-2}{3 z-4}$. Give an exact formula for $T^{n}(z)$ (meaning $T$ composed with itself n times and applied to $z$ ).

2. Show that $f \in \operatorname{Aut}\left(D^{*}(0,1)\right)$ if and only if $f(z)=e^{i \theta} z$ for some $\theta \in \mathbf{R}$.
3. Suppose that $U, V \subset \mathbf{C}$ are domains and that $f: U \rightarrow V$ is a holomorphic bijection. Then there exists an inverse function $f^{-1}: V \rightarrow U$. We never actually proved that $f^{-1}$ is holomorphic, so we'll fix that now. Show that:

- given $w_{0} \in U$, there exist numbers $\epsilon, \delta>0$ such that $w \in D\left(w_{0}, \epsilon\right)$ implies

$$
f^{-1}(w)=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\delta} \frac{z f^{\prime}(z)}{f(z)-w} d z
$$

where $f\left(z_{0}\right)=w_{0}$;

- (using this formula), $f^{-1}$ is holomorphic on $D\left(w_{0}, \epsilon\right)$; and since $w_{0}$ was arbitrary, $f^{-1}$ is holomorphic on $V$.
(This is essentially problem 11 on page 178 of Greene and Krantz.)

4. Find a (sequence of) conformal map(s) taking the set $A$ onto the set $B$ when

- $A=\mathbf{C} \backslash\left\{e^{i \theta}: \theta \in[0, \pi]\right\}, B=\mathbf{C} \backslash D(0,1)$;
- $A=\mathbf{C} \backslash((-\infty, 0] \cup\{1\}), B=\mathbf{C} \backslash((-\infty, 0] \cup\{i\})$.
- $A=\{x+i y \in \mathbf{C}:-1<x-y<1\}, B=\mathbf{H}$.

You should give a formula for each map in the sequence, but you can just draw pictures to illustrate the effect of the map.

