Math 605 Midterm Exam

October 11, 2000

1. State the following (5 points each):

- The definition of a complex analytic function $f: U \rightarrow \mathbf{C}$ where U is open.
- Cauchy's Integral formula (either the first version or the general version we proved later).
- The definition of e^{z} for $z \in \mathbf{C}$.
- Liouville's Theorem.

2. Suppose that $\sum_{n=0}^{\infty} a_{n}(z+2)^{n}$ is a power series for $\frac{z^{2}-1}{z^{2}+(1+i) z}$. What is $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$? (10 points)
3. At what points z is the function $f(z)=|z|^{2}$ complex differentiable? (10 points)
4. Let γ be a C^{1} parametrization of a triangle (in the counterclockwise direction) with one vertex at the origin, one vertex at 1 and the third vertex at $w=a+b i$ where $b>0$.

- Show by direct computation that $\int_{\gamma} \bar{z} d z$ gives 2 i times the area of the triangle. (10 points)
- Suppose we pick a complex number $A=r e^{i \theta}$ and change the triangle by multiplying all its vertices by A. How does the integral in the first part change?

5. Suppose that $f: \mathbf{C} \rightarrow \mathbf{C}$ is an entire function. Show that f is also an isometry-i.e.

$$
|f(z)-f(w)|=|z-w|
$$

for every $z, w \in \mathbf{C}$-if and only if $f(z)=A z+B$ where $A, B \in \mathbf{C}$ are constants and $|A|=1$. (20 points)
6. Suppose that $f: D^{*}(0,1) \rightarrow \mathbf{C}$ is holomorphic and satisfies

$$
z^{2} f^{\prime}(z)=[f(z)]^{2}+z
$$

Show that f has an essential singularity at 0 . (20 points)

