amsppt MATH 606

1. Let Ω be a domain in C, $a \in \Omega$ and $B_R(a) = z$; $|z - a| < R \subset \Omega$. Prove the following mean-value property for any $f \in A(\Omega)$:

i) $f(a) = 12\pi \int_0^2 \pi f(a + Re^i\theta) d\theta.$

i i) $f(a) = 1\pi R^2 \quad _{B_R(a)} \quad f(z)d \ x \ d \ y.$

- **2.** Let Ω be a simply connected domain in C and U is a real harmonic function in Ω .
- i) Prove that there exists an f which is holomorphic in Ω and U = Ref.
- i i) Show that this fails in every region which is not simply connected.
- i ii) Show that U^2 cannot be harmonic in Ω unless U is a constant.

3.) Let F be the family of all functions $\{f\}$ such that fishelomorphic in the open unit disc $D = \{z; |z| <\}$ and f(0) = 1, Ref > 0. Show that F is a normal family.

4.

- i) Let $\{fn(z)\}\$ be a sequence of entire functions which converges uniformly on compact subsets of C to f(z). Prove that f(z) is entire.
- 2) Show that $\sum_{n=1}^{\infty} \ (sinz)^n N^n$ defines an entire function.

5.

- i) State and prove the Mittag-Leffler theorem for the whole plane without using Rumge's theorem.
- i i) State the Rumge's theorem for a bounded domain Ω and apply the Rumge's theorem to prove the Mittag-Leffler theorem for bounded domain Ω .

6. a) Let $a \in C$ and $\Omega = C$