Prob. 1 & 3, p. 221.

- 1. Let X be a CW complex and $A \subset X$ a compact subset.
 - (a) Show that A intersects only finitely many open cells of X. Where do you use "closure-finiteness"?

Proof: To help with this problem as well as part (b) to come, put a partial ordering on the open cells of X as follows: $e_{\alpha} \prec e_{\beta}$ provided $\bar{e}_{\beta} \cap e_{\alpha} \neq \emptyset$ and $\dim e_{\alpha} < \dim e_{\beta}$. Write $e_{\alpha} < e_{\beta}$ provided there exits a sequence of cells $e_{\alpha_0} = e_{\alpha}, e_{\alpha_1}, \ldots e_{\alpha_r} = e_{\beta}$ such that $e_{\alpha_i} \prec e_{\alpha_{i+1}}$ for $0 \leq i < r$. Since the dimension of a cell is finite, any chain $\cdots \prec e_{\alpha_r} \prec \cdots$ must have finite length. Indeed, the maximal such length is the dimension plus 1. Since $e_{\alpha} \prec e_{\beta}$ if and only if $\dot{e}_{\beta} \cap e_{\alpha} \neq \emptyset$. If we fix e_{β} , "closure–finiteness" implies that there are only finitely many open cells e_{α} with $e_{\alpha} \prec e_{\beta}$. It follows that the set of open cells e_{α} with $e_{\alpha} < e_{\beta}$ is also finite. This is a general result about partial orderings. Let $\mathcal{I}(e_{\beta}, 0) = \{e_{\beta}\}$. Define $\mathcal{I}(e_{\beta}, r)$ inductively by $\mathcal{I}(e_{\beta}, r) = \{e_{\alpha} \mid \exists \alpha \text{ such that } e_{\beta} \prec e_{\alpha} \text{ and } e_{\alpha} \in \mathcal{I}(e_{\beta}, r-1)\}$ It follows by induction that the cardinality of $\mathcal{I}(e_{\beta}, r)$ is finite for $0 \leq r$. For $r > \dim e_{\beta}$, $\mathcal{I}(e_{\beta}, r) = \emptyset$. The set of open cells e_{α} with $e_{\alpha} < e_{\beta}$ is the union over r of $\mathcal{I}(e_{\beta}, r)$ and this is finite.

Let E denote any set of points such that $E \cap e_{\alpha}$ has finite cardinality for each open cell α . We claim that the subspace topology inherited by E is the discrete topology. Let F be any subset of E. Note $F \cap \bar{e}_{\beta} \subset (F \cap e_{\beta}) \cup (\bigcup_{e_{\alpha} < e_{\beta}} F \cap e_{\alpha})$ and since the right-hand side is a finite union of finite sets, the left-hand side is finite. Since X is Hausdorff, a finite set of points is closed so $F \cap \bar{e}_{\beta}$ is closed in $bare_{\beta}$. Hence F is a closed subset of X. Since F is an arbitrary subset of E, E inherits the discrete topology.

Finally, let $A \subset X$ be compact and let $E = \{x_{\alpha}\}$ be a choice of one point for each open cell e_{α} with $e_{\alpha} \cap A \neq \emptyset$. Then E inherits the discrete topology. But all the discrete subsets of compact sets are finite. Hence E is finite.

(b) Show that A is contained in a finite subcomplex.

Proof: Let $K \subset X$ be the union of all open cells e_{α} where $e_{\alpha} < e_{\beta}$ for some e_{β} with $A \cap e_{\beta} \neq \emptyset$. By construction, K is a union of finitely many open cells. If $e_{\alpha} \subset K$ and $\dot{e}_{\alpha} \cap e_{\beta} \neq \emptyset$, then $e_{\beta} \prec e_{\alpha}$, so $e_{\beta} \subset K$. Hence K is a subcomplex.

3. For X a CW complex, X is compactly–generated.

Proof: We show $i_X: X_C \to X$ is a closed map. Let $A \subset X_C$ be closed. Then $A \cap D$ is a closed subset of D for all compact $D \subset X$. Since \bar{e}_{α} is the image of a compact set, it is compact, so $A \cap \bar{e}_{\alpha}$ is a closed subset of \bar{e}_{α} for all open cells α . But this means A is closed in X.