Math 608 Final
May 7, 1998
Professor Taylor

When proving things during this test, you may assume earlier parts of a problem even if you can not do them. You may also assume known the homology of $S^{n}, R P^{n}$ and $C P^{n}$ as well as their cohomology rings.

Problem 1.

(a) Show $C P^{3}$ and $S^{2} \times S^{4}$ have isomorphic homology. (You may just write down $H_{*}\left(C P^{3}\right)$, but you need to compute $H_{*}\left(S^{2} \times S^{4}\right)$ using the Künneth formula.)
(b) Part (a) notwithstanding, show $C P^{3}$ and $S^{2} \times S^{4}$ are not homotopy equivalent by showing that any map $f: S^{2} \times S^{4} \rightarrow C P^{3}$ has degree 0 . Hint: Compute in cohomology.
(c) For good measure, show that any map $g: C P^{3} \rightarrow S^{2} \times S^{4}$ also has degree 0 .

Problem 2. Suppose given an exact sequence $0 \rightarrow G_{0} \rightarrow G_{1} \rightarrow G_{2} \rightarrow 0$.
(a) If A is an abelian group show

$$
0 \rightarrow \operatorname{Hom}\left(A, G_{0}\right) \rightarrow \operatorname{Hom}\left(A, G_{1}\right) \rightarrow \operatorname{Hom}\left(A, G_{2}\right)
$$

is exact.
(b) If A is a free abelian group show

$$
0 \rightarrow \operatorname{Hom}\left(A, G_{0}\right) \rightarrow \operatorname{Hom}\left(A, G_{1}\right) \rightarrow \operatorname{Hom}\left(A, G_{2}\right) \rightarrow 0
$$

is exact.

- Apply (b) to the groups $S_{*}(X)$. The sequence in (b) is natural so there results an exact sequence of chain complexes. When one applies homology, one gets a long exact sequence

$$
\cdots \rightarrow H^{r}\left(X ; G_{0}\right) \rightarrow H^{r}\left(X ; G_{1}\right) \rightarrow H^{r}\left(X ; G_{2}\right) \xrightarrow{\beta} H^{r+1}\left(X ; G_{0}\right) \rightarrow \cdots
$$

The map β is again called the Bockstein associated to the exact sequence of coefficient groups.
(c) Compute the cohomology Bockstein sequences for $X=R P^{2}$ and coefficient sequence $0 \rightarrow \mathbf{Z} \xrightarrow{\times 2} \mathbf{Z} \rightarrow \mathbf{Z} / 2 \mathbf{Z} \rightarrow 0$.

Problem 3. Let Y be a compact orientable manifold of dimension 7. Suppose we know the following groups: $H_{7}(Y ; \mathbf{Z}) \cong \mathbf{Z}, H_{6}(Y ; \mathbf{Z}) \cong \mathbf{Z}, H_{5}(Y ; \mathbf{Z}) \cong \mathbf{Z} / 2 \mathbf{Z}$ and $H_{4}(Y ; \mathbf{Z})=$ $\mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z}$.
(a) Use the universal coefficients theorem to compute $H^{r}(Y ; \mathbf{Z})$ for $r=7,6$, and 5.
(b) Recall the fact that all the homology groups of Y are finitely-generated plus the fact that $\operatorname{Ext}(A, \mathbf{Z}) \cong T$ where $T \subset A$ denotes the torsion subgroup. Using these facts, what can you say about $H^{4}(Y ; \mathbf{Z})$?
(c) Use Poincaré duality to compute $H_{r}(Y ; \mathbf{Z})$ for $0 \leq r<3$.

Problem 4. Let M^{m} be a compact connected manifold of dimension $m>2$ with boundary $\partial M=S^{m-1}$. If the map $\partial M \rightarrow M$ is null homotopic, show that $\widetilde{H}_{*}(M ; \mathbf{Z})=0$.

