Math 608 Midterm

April 3, 1998

Due 8am April 6

Problem 1. If X and Y are CW complexes, show that $X \times_{C} Y$ is also. Here $X \times_{C} Y=$ $(X \times Y)_{C}$ as in problem 3, p. 213.

Problem 2. Let $f:[-1,1] \rightarrow[-1,1]$ be continuous and suppose $f(1)= \pm 1, f(-1)= \pm 1$. Show that

$$
f_{*}: H_{1}([-1,1],\{-1,1\}) \rightarrow H_{1}([-1,1],\{-1,1\})
$$

is given as follows:
a. multiplication by 1 if $f(-1)=-1$ and $f(1)=1$;
b. multiplication by -1 if $f(-1)=1$ and $f(1)=-1$;
c. multiplication by 0 if $f(1)=f(-1)$.

Problem 3. Let $z^{n}: S^{1} \rightarrow S^{1}$ for $n \in \mathbf{Z}$ be the map obtained by considering S^{1} as the unit circle in the complex plane and raising z to the n-th power. Choose cell structures on the range and domain S^{1} so that z^{n} is cellular and use problem 2 to prove that the map $z_{*}^{n}: H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(S^{1}\right)$ is multiplication by n.
Problem 4. Let $f: S^{m} \rightarrow S^{m}$ be a map. If f is not onto, prove that $f_{*}: H_{m}\left(S^{m}\right) \rightarrow$ $H_{m}\left(S^{m}\right)$ is the zero map.
Problem 5. Consider S^{2} as the Riemann sphere. Equivalently, S^{2} is the complex plane, \mathbf{C} with the point at infinity added and topologized as the one point compactifiaction. Let $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ be a degree n polynomial with all $a_{i} \in \mathbf{C}$. The polynomial p induces a map $p: \mathbf{C} \rightarrow \mathbf{C}$. Show that p extends to a map $p: S^{2} \rightarrow S^{2}$ and further show that any two such maps of the same degree are homotopic.

Problem 6. Use the Mayer-Vietoris Theorem and problem 3 to show that $z^{n}: S^{2} \rightarrow S^{2}$ induces the map $z_{*}^{n}: S^{2} \rightarrow S^{2}$ which is multiplication by n.

Remark: Problems 4, 5 and 6 prove the Fundamental Theorem of Algebra: any degree n polynomial with coefficients in \mathbf{C} has a root in \mathbf{C}.
Problem 7. Let K^{2} be the Klein bottle. This is a CW complex with one 0 -cell, two 1-cells and one 2 -cell. Let the rectangle, R, below be the evident CW complex with four 0-cells, four 1-cells and one 2-cell. There is a cellular map $f: R \rightarrow K$ which takes all the vertices of R to the vertex of K; the four 1-cells of R to the two 1-cells of K as indicated by the arrows and labels; the 2-cell of R to the 2 -cell of K by a homeomorphism on the interiors. Use this information to compute the boundary maps in the cellular chain complex for K. Problem 2 is useful here.

