Mathematics 609 — Final Exam – Version II

Answer all the following questions. (Question 1 has changed from Version I.) You may use any source that you wish as long as it isn't living. The test is due at 3:00 PM on Wednesday, December 17. Please give it to me personally or put it in my box on in the mailroom on the third floor.

- 1. Suppose that $X = \{\varphi_i \mid i \in \omega\}$ is a set of \mathcal{L} -sentences and T a theory such that for every model \mathcal{A} of T, there is $\varphi_i \in X$ such that $\mathcal{A} \models \varphi_i$. Show that there is a finite subset $\{\varphi_{i_1}, \ldots, \varphi_{i_n}\}$ of formulas from X such that $T \vdash \varphi_{i_1} \lor \cdots \lor \varphi_{i_n}$.
- 2. Suppose that \mathcal{A} is a countably infinite \mathcal{L} -structure in a countable language \mathcal{L} .
 - (a) Show that \mathcal{A} is an atomic model of $T = \mathrm{TH}(\mathcal{A})$ if and only if for every finite $Y \subseteq A$, \mathcal{A}_Y is an atomic model of $T' = \mathrm{TH}(\mathcal{A}_Y)$.
 - (b) With the same notation of the previous part, show that T is \aleph_0 -categorical iff T' is \aleph_0 -categorical.
- 3. Show that if $A \leq B$ and $B \leq C$ then $A \leq C$.
- 4. Suppose that f, g, h, and k are primitive recursive functions. Let p and q be defined by simultaneous recursion as follows.

$$p(x,0) = f(x)$$

$$q(x,0) = g(x)$$

$$p(x,y+1) = h(x,y,p(x,y),q(x,y))$$

$$q(x,y+1) = k(x,y,p(x,y),q(x,y))$$

Show that p and q are primitive recursive.

- 5. Show that Tot \equiv_1 Inf.
- 6. Soare, page 32, 1.19.
- 7. Soare, page 32, 1.21.
- 8. (a) Soare, page 38, 3.8, part a. (Notation: if C and D are sets, $C \oplus D$ denotes the set $\{2x \mid x \in C\} \cup \{2x+1 \mid x \in D\}$.
 - (b) Use part a to give an alternate proof to Rice's Theorem, namely that if A is an index set such that $A \neq \emptyset$ and $A \neq \omega$, then A is not computable.
- 9. Soare, page 40, 3.16.
- 10. Soare, page 43, 4.10. (The notation $\lambda x[g(x,y)]$ is notation for the function h(x) = g(x,y); in other words, the function of x with y fixed.)