Problem Set II Math 609

- 1. Given an interpretation $\mathcal{I} = (\mathcal{A}, h)$ and $\varphi, \psi \in \text{Form}(\mathcal{L})$ prove the following.
 - $\mathcal{I} \models \forall x_i \varphi$ if and only if for all $a \in A$, $\mathcal{I}_a^{x_i} \models \varphi$.
 - $\mathcal{I} \models \varphi \lor \psi$ if and only if $\mathcal{I} \models \varphi$ or $\mathcal{I} \models \psi$.
 - $\mathcal{I} \models \varphi \rightarrow \psi$ if and only if whenever $\mathcal{I} \models \varphi$, then $\mathcal{I} \models \psi$.
 - $\mathcal{I} \models \varphi \leftrightarrow \psi$ if and only if $(\mathcal{I} \models \varphi \text{ iff } \mathcal{I} \models \psi).$
- 2. Give an example of formulas φ and ψ and an \mathcal{L} -structure M, such that $M \models \varphi \lor \psi$, but neither $M \models \varphi$ nor $M \models \psi$ holds.
- 3. Give a formal definition of the set $var(\varphi)$ of free variables occuring in the formula $\varphi \in Form(\mathcal{L})$, (that is, give a definition based on induction on the complexity of φ).
- 4. Let $\varphi \in \text{Form}(\mathcal{L})$ with $\text{var}(\varphi) = \{x_0, \dots, x_n\}$. Show that for an \mathcal{L} -structure $\mathcal{A}, \mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \forall x_0, \dots, x_n \varphi$.
- 5. Let $\mathcal{L} = \mathcal{L}_{PO} = (\leq)$ be the first order language for a partial order. Consider the \mathcal{L} -structures $\mathcal{A} = (\mathcal{N}, \leq)$ where \mathcal{N} denotes the natural numbers and \leq the standard patial order on \mathcal{N} and $\mathcal{B} = (\mathcal{N}, |)$ where a|b denotes the binary relation "a divides b." Let $\sigma(x_0, x_1)$ be the formula

$$x_0 \le x_1 \land x_0 \ne x_1 \land \forall x_2 (x_0 \le x_2 \land x_2 \le x_1 \to x_0 = x_2 \lor x_1 = x_2),$$

let $\varphi(x_0)$ be the formula $\exists x_1 \sigma(x_0, x_1)$ and

let $\psi(x_0)$ be the formula $\varphi(x_0) \land \forall x_1, x_2(\sigma(x_0, x_1) \land \sigma(x_0, x_2) \to x_1 = x_2)$.

Let h be any instantiation for \mathcal{A} (respectively, \mathcal{B}) such that $h(x_0) \neq 0$. Evaluate φ and ψ in h. (Hint: Because $h(x_0) \neq 0$, the answer will not depend on h.)

- 6. Let \mathcal{L} be a first order language with variables $x_0, x_1, \ldots, x_n, \ldots$. Prove that every instantiation $h: \operatorname{Var}(\mathcal{L}) \to \mathcal{A}$ extends uniquely to an \mathcal{L} -homomorphism h' from the term algebra of \mathcal{L} with basis $\operatorname{Var}(\mathcal{L})$ to the \mathcal{L} -structure \mathcal{A} .
- 7. Let *n* be a natural number. Write a sentence φ_n in the language of pure equality such that for every set $M, M \models \varphi$ if and only if M has exactly *n* elements. Give an example of a sentence σ in a first-order language \mathcal{L} such that whenever $M \models \sigma$, then M is infinite.