Problem Set III

Math 609

- 1. Give deductions for the axioms for equality.
 - $\bullet \vdash x \doteq x$
 - $\bullet \vdash x \doteq y \rightarrow y \doteq x$
 - $\bullet \vdash x \doteq y \land y \doteq z \rightarrow x \doteq z$
- 2. Give deductions for the following.
 - $\forall x \forall y \varphi \vdash \forall y \forall x \varphi$
 - $R(x) \vdash \exists y R(y)$
- 3. (Prenex normal form.) A formula φ is a *prenex formula* if it has the form $Q_0x_0Q_1x_1\ldots Q_nx_n\psi$ where Q_i is \exists or \forall and ψ is quantifier-free. Prove that for any formula σ there is a prenex formula φ such that $\vdash \sigma \leftrightarrow \varphi$.
- 4. Define rigorously, by recursion on the formula $\varphi(x)$, when the term t is substitutable for x in φ .
- 5. Let \mathcal{L} be a first-order language and $\{A_i : i \in I\}$ a set of \mathcal{L} -structures. Define the \mathcal{L} -structure $\prod_{i \in I} A_i$, the Cartesian product of the A_i .
- 6. Classify all the finite structures (up to isomorphism) in the following cases.
 - The \mathcal{L} -structures where $\mathcal{L} = \mathcal{L}_{=}$ is the language of pure equality.
 - The \mathcal{L} -structures where $\mathcal{L} = (R)$ and R is a unary relation symbol.
 - \bullet The $\mathcal L$ -structures that satisfy the formula

$$E(x,x) \wedge (E(x,y) \rightarrow E(y,x)) \wedge (E(x,y) \wedge E(y,z) \rightarrow E(x,z))$$

in the language $\mathcal{L} = (E)$ where E is a binary relation symbol.

 \bullet The $\mathcal L\text{-structures}$ that satisfy the formula

$$(f(x) = f(y) \rightarrow x = y) \land \forall y \exists x (f(x) = y)$$

in the language $\mathcal{L} = (f)$ where f is a unary function symbol.