Problem Set VI

Math 609

1. A structure $\mathcal{F} = (F, P; +, \cdot; 0, 1)$ is an *ordered field* if it satisfies the axioms for a field (in the reduct $(+, \cdot; 0, 1)$) and the following axioms involving the unary relation, that is, predicate, symbol P. This symbol is intended to interpret the positive elements of the ordered field \mathcal{F} .

OF1. $P(x) \wedge P(y) \rightarrow P(x+y)$.

OF2. $P(x) \wedge P(y) \rightarrow P(x \cdot y)$.

OF3. $x \neq 0 \to (P(x) \lor P(-x))$

OF4. $\neg (P(x) \land P(-x))$

Show that every ordered field has characteristic 0, that is, for every nonzero natural number n, $OF \vdash nx \doteq 0 \rightarrow x \doteq 0$. Prove that the binary relation < on the structure $\mathcal{F} = (F, P; +, \cdot; 0, 1)$ defined by x < y = P(y - x) is a dense linear order without endpoints.

- 2. An ordered field $\mathcal{F} = (F, P; +, \cdot; 0, 1)$ is called *Archimidean* if for every $a \in F$, there is a natural number n such that |a| < n. Prove the following.
 - Every ordered field is elementarily equivalent to a non-Archimedean field.
 - The set of elements $R = \{a \in F : |a| < n \text{ for some natural number } n\}$ is a subring of $(F, +, \cdot; 0, 1)$
 - \bullet The set of non-units of R is the ideal of infinitesimal elements

 $I := \{a : |a| < 1/n \text{ for some positive natural number } n\}.$

• R/I is an Archimedean field.

In the remaining exercises, assume that \mathcal{L} is a countable language and that T is a complete theory in \mathcal{L} .

3. Prove that if a model $\mathcal{A} \models T$ is atomic and countable, then it is the prime model of T.

Definition. A countable model $\mathcal{A} \models T$ is homogeneous if given $a, a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathcal{A}$ such that $\operatorname{tp}_{\mathcal{A}}(a_1, \ldots, a_n) = \operatorname{tp}_{\mathcal{A}}(b_1, \ldots, b_n)$, there is a $b \in \mathcal{A}$ such that $\operatorname{tp}_{\mathcal{A}}(a, a_1, \ldots, a_n) = \operatorname{tp}_{\mathcal{A}}(b, b_1, \ldots, b_n)$.

- 4. Verify that if $A \models T$ is countable and atomic, then it is homogeneous.
- 5. Verify that if $A \models T$ is countable and saturated, then it is homogeneous.
- 6. Prove that if $\mathcal{A} \models T$ is homogeneous and $a_1, \ldots, a_n, b_n, \ldots, b_n \in \mathcal{A}$ are such that $\operatorname{tp}_{\mathcal{A}}(a_1, \ldots, a_n) = \operatorname{tp}_{\mathcal{A}}(b_1, \ldots, b_n)$, then there is an automorphism $\eta : \mathcal{A} \to \mathcal{A}$ such that $\eta : a_i \mapsto b_i$.
- 7. Prove that if \mathcal{A} , $\mathcal{B} \models T$ are countable homogeneous models of T, then $\mathcal{A} \cong \mathcal{B}$ if and only if they realize the same n-types for all $n < \omega$.

1