Problem Set VI

Math 609

1. A structure $\mathcal{F}=(F, P ;+, \cdot ; 0,1)$ is an ordered field if it satisfies the axioms for a field (in the reduct $(+, \cdot ; 0,1))$ and the following axioms involving the unary relation, that is, predicate, symbol P. This symbol is intended to interpret the positive elements of the ordered field \mathcal{F}.

OF1. $P(x) \wedge P(y) \rightarrow P(x+y)$.
OF2. $P(x) \wedge P(y) \rightarrow P(x \cdot y)$.
OF3. $x \neq 0 \rightarrow(P(x) \vee P(-x))$
OF4. $\neg(P(x) \wedge P(-x))$
Show that every ordered field has characteristic 0 , that is, for every nonzero natural number n, $O F \vdash n x \doteq 0 \rightarrow x \doteq 0$. Prove that the binary relation $<$ on the structure $\mathcal{F}=(F, P ;+, \cdot ; 0,1)$ defined by $x<y=P(y-x)$ is a dense linear order without endpoints.
2. An ordered field $\mathcal{F}=(F, P ;+, \cdot ; 0,1)$ is called Archimidean if for every $a \in F$, there is a natural number n such that $|a|<n$. Prove the following.

- Every ordered field is elementarily equivalent to a non-Archimedean field.
- The set of elements $R=\{a \in F:|a|<n$ for some natural number $n\}$ is a subring of $(F,+, \cdot ; 0,1)$
- The set of non-units of R is the ideal of infinitesimal elements

$$
I:=\{a:|a|<1 / n \text { for some positive natural number } n\} .
$$

- R / I is an Archimedean field.

In the remaining exercises, assume that \mathcal{L} is a countable language and that T is a complete theory in \mathcal{L}.
3. Prove that if a model $\mathcal{A} \models T$ is atomic and countable, then it is the prime model of T.

Definition. A countable model $\mathcal{A} \models T$ is homogeneous if given $a, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathcal{A}$ such that $\operatorname{tp}_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{tp}_{\mathcal{A}}\left(b_{1}, \ldots, b_{n}\right)$, there is a $b \in \mathcal{A}$ such that $\operatorname{tp}_{\mathcal{A}}\left(a, a_{1}, \ldots, a_{n}\right)=$ $\operatorname{tp}_{\mathcal{A}}\left(b, b_{1}, \ldots, b_{n}\right)$.
4. Verify that if $\mathcal{A} \models T$ is countable and atomic, then it is homogeneous.
5. Verify that if $\mathcal{A} \vDash T$ is countable and saturated, then it is homogeneous.
6. Prove that if $\mathcal{A} \models T$ is homogeneous and $a_{1}, \ldots, a_{n}, b_{n}, \ldots, b_{n} \in \mathcal{A}$ are such that $\operatorname{tp}_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=$ $\operatorname{tp}_{\mathcal{A}}\left(b_{1}, \ldots, b_{n}\right)$, then there is an automorphism $\eta: \mathcal{A} \rightarrow \mathcal{A}$ such that $\eta: a_{i} \mapsto b_{i}$.
7. Prove that if $\mathcal{A}, \mathcal{B} \models T$ are countable homogeneous models of T, then $\mathcal{A} \cong \mathcal{B}$ if and only if they realize the same n-types for all $n<\omega$.

