Problem Set VII - The Midterm Math 609

Answer the following questions as clearly and completely as you can. In solving a given exercise, you are free to assume (and encouraged to cite) any of the previous exercises.

- 1. Let $\mathcal{L} = (E)$ be a first-order language where E is a binary relation symbol. What is an \mathcal{L} -structure?
- **2.** Let $\mathcal{L} = (E)$ be as above and let $\mathcal{A} = (A, E^{\mathcal{A}})$ and $\mathcal{B} = (B, E^{\mathcal{B}})$ be \mathcal{L} -structures. What is an \mathcal{L} -homomorphism $\eta : \mathcal{A} \to \mathcal{B}$?
- **3.** Express the axioms for an equivalence relation in the language $\mathcal{L} = (E)$. Denote the theory of an equivalence relation, that is, the set of consequences of these axioms, by T_{eq} .
- **4.** Calculate $I(T_{eq}, n)$ for n = 1, 2, 3 and 4.
- 5. Let $\mathcal{A} = (A, E^{\mathcal{A}})$ be an \mathcal{L} -structure such that $\mathcal{A} \models T_{eq}$. For $a \in A$, denote the equivalence class of a modulo $E^{\mathcal{A}}$ by $a/E^{\mathcal{A}}$ and denote by $A/E^{\mathcal{A}}$ the set of equivalence classes of A modulo $E^{\mathcal{A}}$. Prove that if $\mathcal{B} = (B, E^{\mathcal{B}}) \models T_{eq}$, then an \mathcal{L} -homomorphism $\eta : \mathcal{A} \to \mathcal{B}$ induces a function $\eta/E : A/E^{\mathcal{A}} \to B/E^{\mathcal{B}}$ in the natural way.
- 6. Prove that an \mathcal{L} -homomorphism $\eta : \mathcal{A} \to \mathcal{B}$ is an embedding if and only if both η and η/E are injective.
- 7. Let n be a natural number and $\mathcal{A} \models T_{eq}$. Exhibit a formula $P_n(x)$ that defines in \mathcal{A} the set of all $a \in A$ such that $|a/E^{\mathcal{A}}| = n$.

Assume from now on that $T \supseteq T_{eq}$ is a complete theory.

- 8. Show that if $T \models \exists x P_n(x)$, then the formula $P_n(x)$ isolates a type in $S_1(T)$, that is, the basic open subset $[P_n(x)]$ of $S_1(T)$ is singleton.
- **9.** Consider the 1-type $p_{\infty}(x) := \{\neg P_n(x) : n < \omega\}$. Prove that if p_{∞} is *T*-consistent, then it determines a unique point of $S_1(T)$.
- 10. Suppose that p_{∞} is *T*-consistent. Prove that p_{∞} is isolated in $S_1(T)$ if and only if there are only finitely many natural numbers *n* for which $T \models \exists x P_n(x)$.
- 11. Let $\mathcal{A} = (A, E^{\mathcal{A}})$ and $\mathcal{B} = (B, E^{\mathcal{B}})$ be *countable* \mathcal{L} -structures such that $\mathcal{A}, \mathcal{B} \models T_{eq}$. Show that \mathcal{A} and \mathcal{B} are isomorphic if and only if for every natural number n, $|P_n(\mathcal{A})/E^{\mathcal{A}}| = |P_n(\mathcal{B})/E^{\mathcal{B}}|$ and also $|p_{\infty}(\mathcal{A})/E^{\mathcal{A}}| = |p_{\infty}(\mathcal{B})/E^{\mathcal{B}}|$.
- 12. Prove that T is \aleph_0 -categorical if and only if it has an infinite model and the Stone space $S_1(T)$ is finite.
- **13.** Prove that T is \aleph_1 -categorical if and only if the following three conditions are satisfied:
 - a) $S_1(T)$ is finite.
 - **b)** The definable set $p(\mathcal{A})$ is infinite for exactly one of the 1-types $p \in S_1(T)$.
 - c) $|p_{\infty}(\mathcal{A})/E^{\mathcal{A}}| \leq 1.$