The Stone space of types

Math 609
Let \mathcal{L} be a first-order language. An n-type $\Sigma=\Sigma\left(x_{1}, \ldots, x_{n}\right)$ is a deductively closed subset of $\operatorname{Form}(\mathcal{L})$ such that for every $\varphi \in \Sigma\left(x_{1}, \ldots, x_{n}\right), \operatorname{var}(\varphi) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$. A theory is 0 -type.

- An n-type $\Sigma\left(x_{1}, \ldots, x_{n}\right)$ is consistent if and only if for every finite subset $\varphi_{1}, \ldots, \varphi_{m} \in \Sigma$ there is an \mathcal{L}-structure \mathcal{A} such that

$$
\mathcal{A} \models \exists x_{1}, \ldots, x_{n}\left(\bigwedge_{i=1}^{m} \varphi_{i}\right) .
$$

By the Compactness Theorem, this is equivalent to the existence of an \mathcal{L} structure \mathcal{A} and $a_{1}, \ldots, a_{n} \in$ \mathcal{A} such that

$$
\mathcal{A} \models \Sigma\left(a_{1}, \ldots, a_{n}\right) .
$$

- An n-type $p=p\left(x_{1}, \ldots, x_{n}\right)$ is complete if it is consistent and for every formula $\varphi \in \operatorname{Form}(\mathcal{L})$, such that $\operatorname{var}(\varphi) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, either $\varphi \in p$ or $\neg \varphi \in p$.

Example. Let \mathcal{A} be an \mathcal{L}-structure and $a_{1} \ldots, a_{n} \in \mathcal{A}$, then

$$
\operatorname{tp}_{\mathcal{A}}\left(a_{1} \ldots, a_{n}\right):=\left\{\varphi\left(x_{1} \ldots, x_{n}\right) \mid \mathcal{A} \models \varphi\left(a_{1} \ldots, a_{n}\right)\right\}
$$

is complete. By the Compactness Theorem, every complete n-type is of this form.

- The Stone space $S_{n}^{\mathcal{L}}$ is the set whose points are the complete n-types in the language \mathcal{L} and a basis of open subsets is given by the sets

$$
\left[\varphi\left(x_{1} \ldots, x_{n}\right)\right]:=\left\{p \in S_{n}^{\mathcal{L}} \mid \varphi \in p\right\} .
$$

Every open subset of $S_{n}^{\mathcal{L}}$ is of the form $\bigcup_{i \in I}\left[\varphi_{i}\right]$ and every closed subset is of the form $\bigcap_{i \in I}\left[\psi_{i}\right]$. By the Compactness Theorem, the topological space $S_{n}^{\mathcal{L}}$ is compact.

Example. $\left(n=0\right.$.) The points of $S_{0}^{\mathcal{L}}$ are the complete theories of \mathcal{L}-structures.

- Let Σ be a consistent n-type. Define the $S_{n}^{\mathcal{L}}(\Sigma) \subseteq S_{n}^{\mathcal{L}}$ to be the closed subset $\bigcap_{\varphi \in \Sigma}[\varphi]$. Then $p \in S_{n}^{\mathcal{L}}(\Sigma)$ if and only if $p \supseteq \Sigma$ is a completion of Σ.

Example. Let T be a theory in \mathcal{L}. Then $S_{n}^{\mathcal{L}}(T)$ denotes the closed subset of $S_{n}^{\mathcal{L}}$ of all n-types realized in some model of T.

- (constants vs. variables) Let $\mathcal{L}^{\prime}=\mathcal{L}\left(c_{1}, \ldots c_{m}\right)$ be an expansion of \mathcal{L} by m new constant symbols. If $m \leq n$, then the function $S_{n}^{\mathcal{L}} \rightarrow S_{n-m}^{\mathcal{L}^{\prime}}$ defined by $p\left(x_{1}, \ldots, x_{n}\right) \mapsto p\left(c_{1}, \ldots, c_{m}, x_{1}, \ldots, x_{n-m}\right)$ is a homeomorphism.

Example. ($m=n$.) The Stone space $S_{m}^{\mathcal{L}}$ is homeomorphic via the evaluation map to the the Stone space $S_{0}^{\mathcal{L}^{\prime}}$ of complete theories in the expanded language $\mathcal{L}^{\prime}=\mathcal{L}\left(c_{1}, \ldots, c_{m}\right)$.

