The Stone space of types Math 609

Let \mathcal{L} be a first-order language. An *n*-type $\Sigma = \Sigma(x_1, \ldots, x_n)$ is a deductively closed subset of Form(\mathcal{L}) such that for every $\varphi \in \Sigma(x_1, \ldots, x_n)$, $\operatorname{var}(\varphi) \subseteq \{x_1, \ldots, x_n\}$. A theory is 0-type.

• An *n*-type $\Sigma(x_1, \ldots, x_n)$ is consistent if and only if for every finite subset $\varphi_1, \ldots, \varphi_m \in \Sigma$ there is an \mathcal{L} -structure \mathcal{A} such that

$$\mathcal{A} \models \exists x_1, \dots, x_n (\bigwedge_{i=1}^m \varphi_i).$$

By the Compactness Theorem, this is equivalent to the existence of an \mathcal{L} structure \mathcal{A} and $a_1, \ldots, a_n \in \mathcal{A}$ such that

$$\mathcal{A} \models \Sigma(a_1, \ldots, a_n).$$

• An *n*-type $p = p(x_1, \ldots, x_n)$ is complete if it is consistent and for every formula $\varphi \in \text{Form}(\mathcal{L})$, such that $\text{var}(\varphi) \subseteq \{x_1, \ldots, x_n\}$, either $\varphi \in p$ or $\neg \varphi \in p$.

Example. Let \mathcal{A} be an \mathcal{L} -structure and $a_1 \ldots, a_n \in \mathcal{A}$, then

$$\operatorname{tp}_{\mathcal{A}}(a_1\ldots,a_n) := \{\varphi(x_1\ldots,x_n) \mid \mathcal{A} \models \varphi(a_1\ldots,a_n)\}$$

is complete. By the Compactness Theorem, every complete n-type is of this form.

• The Stone space $S_n^{\mathcal{L}}$ is the set whose points are the complete *n*-types in the language \mathcal{L} and a basis of open subsets is given by the sets

$$[\varphi(x_1\ldots,x_n)] := \{ p \in S_n^{\mathcal{L}} \mid \varphi \in p \}.$$

Every open subset of $S_n^{\mathcal{L}}$ is of the form $\bigcup_{i \in I} [\varphi_i]$ and every closed subset is of the form $\bigcap_{i \in I} [\psi_i]$. By the Compactness Theorem, the topological space $S_n^{\mathcal{L}}$ is compact.

Example. (n = 0.) The points of $S_0^{\mathcal{L}}$ are the complete theories of \mathcal{L} -structures.

• Let Σ be a consistent *n*-type. Define the $S_n^{\mathcal{L}}(\Sigma) \subseteq S_n^{\mathcal{L}}$ to be the closed subset $\bigcap_{\varphi \in \Sigma} [\varphi]$. Then $p \in S_n^{\mathcal{L}}(\Sigma)$ if and only if $p \supseteq \Sigma$ is a completion of Σ .

Example. Let T be a theory in \mathcal{L} . Then $S_n^{\mathcal{L}}(T)$ denotes the closed subset of $S_n^{\mathcal{L}}$ of all n-types realized in some model of T.

• (constants vs. variables) Let $\mathcal{L}' = \mathcal{L}(c_1, \ldots c_m)$ be an expansion of \mathcal{L} by m new constant symbols. If $m \leq n$, then the function $S_n^{\mathcal{L}} \to S_{n-m}^{\mathcal{L}'}$ defined by $p(x_1, \ldots, x_n) \mapsto p(c_1, \ldots, c_m, x_1, \ldots, x_{n-m})$ is a homeomorphism.

Example. (m = n.) The Stone space $S_m^{\mathcal{L}}$ is homeomorphic via the evaluation map to the the Stone space $S_0^{\mathcal{L}'}$ of complete theories in the expanded language $\mathcal{L}' = \mathcal{L}(c_1, \ldots, c_m)$.