Math 651:	Complex	\mathbf{Lie}	Groups	and	Geometry
					Syllabus

	Lie groups	
	Semi-direct products	
	Subgroups	
	Universal cover	
	Lie algebras	
	Adjoint representations	
	Exponential map	
	Logarithm and Campbell-Hausdorf formulas	Assignment 1
	Solvable, nilpotent, semi-simple	
	Levi-Mal'cev, complete reudcibility	
	Lie's Theorem	Assignment 2
	Killing Form, Cartan's criterion	
	Intro to classification of semsimple, reps of SL_2	
	Representations of sl_2	
	Consequences of sl_2 reps for roots and root spaces	
	Root systems, examples in rank 2 and 3	
20	Properties of root systems	
	Simple roots, Dynkin diagrams, and their classification	
25	Recovering a Lie algebra from a Dynkin diagram	
27	The classical root systems and Lie algebras	
Mar. 2	Fundamental dominant weights and simple reflections	
3	Weyl chambers and transitivity of Weyl group	
5	Length and index	
5 - 13	Midsemester Break	
16	The classical Weyl groups	
18	Weights of a representation	
20	Calculating Weyl group orbits	
23	Weyl character and dimension formula	
	Constructing subalgebras and subgroups from roots	
27	Parabolic subalgebras and subgroups	
	Homogeneous spaces and group actions	
	Complex structure on G/H	
-	Equivariant fibrations	
	Normalizer fibration, holomorphic reduction	
	Albanese fibration; compact complex Lie groups	
	Easter Break	
	Easter Break	
	Equivariance theorem, compact parallelizable	
	Wang's theorem	
	Borel-Remmert Theorem	
	Equivariant imbeddings into \mathbf{P}^n	
	Homogeneous line bundles	
	Imbedding S/P	
	Borel-Weil Theorem	
	Study Day	