\documentstyle{amsppt} \magnification 1200 \NoRunningHeads %%\hoffset=.5in 1.\ \ Let $T$ be a linear operator on $\Bbb R^3$ defined by $T(x_1, x_2, x_3) = (x_1 + 2x_2 + 7x_3, 2x_1 - 2x_2 + 2x_3, 6x_2 + 12x_3)$ \itemitem{a)} What is the matrix of $T$ in the standard ordered basis for $\Bbb R^3$? \vfill \itemitem{b)} Find a basis for the null space of $T$. \vfill \itemitem{c)} Find a basis for the range of $T$. \newpage 2.\ \ Let $\Bbb V$ be the vector space of all $(3\times 3)$ matrices. Let $W_0$ and $W_1$ be subspaces of $V$ defined by $$ \aligned &W_0 = \{A \in \Bbb V|A_{11} + A_{22} + A_{33}= 0\}\\ &W_1 = \{A \in \Bbb V|A_{ij} = A_{ji} \text{ for all } i,j\} \endaligned $$ \itemitem{a)}Find the dimension and a basis for $W_0$. \vfill \itemitem{b)}Find the dimension and a basis for $W_1$. \vfill \itemitem{c)} Find the dimension and a basis for $W_0 \cap W_1$. \vfill \itemitem{d)} Find the dimension and a basis for $W_0 + W_1$. \newpage 3.\ a)\ Let $A$ and $B$ be $n\times n$ matrices. Show that $Tr\ AB = Tr\ BA$ \vfill \itemitem{b)} Show that similar matrices have the same trace. \vfill \itemitem{c)}Prove that the matrices $A = \left[\matrix 1&0\\2&3 \endmatrix \right]\ B = \left[\matrix 1&0\\3&2\endmatrix \right]$ are not similar. \vfill \itemitem{d)} Let $A$ be the same as in c). What is $A^t$? Are $A$ and $A^t$ similar? \newpage 4.\ \ Determine which of the following subsets of $\Bbb F[x]$ are ideals. If it is, find its monic generator. \itemitem{a)}$\{f|f(0) = f'(0) = 0\}$ \vfill \itemitem{b)}$\{f = (x^2 + 3x + 2) g + (x^3 + 2x^2 + x + 2)h|\ g, h \in \Bbb F[x]\}$ \newpage \itemitem{c)}$\{f| deg f \ge 1\}$ \vfill \itemitem{d)} $\{f| f(A) = 0$, where $A = \left[\matrix2&0\\-2&1\endmatrix \right]\}$ \newpage 5.\ \ Let $\Cal P_3$ be the space of all polynomials of degree less or equal to $3$. Let $D$ be the differential operator on $\Cal P_3$ defined by $$D(\sum^3_{k=0} C_k x^k) = \sum^3_{k=1} k C_k x^{k-1}$$ \itemitem{a)}Is $D$ invertible? What are the null space $N_D$ and the range $R_D$ of $D$? Find a basis for $N_D$ and $R_D$ respectively. \vfill \itemitem{b)} What is the respresentation of $D$ with respect to the standard basis \newline $\Cal B = \{1, x, x^2, x^3\}$? \vfill \itemitem{c)} Let $\Cal B^\ast$ be the dual basis for $\Cal P^\ast_3$. What is the representation for $D^t$, the transpose of $D$ with respect to $\Cal B^\ast$? \newpage \itemitem{d)} Let $f \in \Cal P_3^\ast$ be the linear functional defined by $$f(p) = \int^1_0 p(x) dx\ \ \ \ p(x) \in \Cal P_3$$ What is $D^tf(p)$ where $p(x) = x^2 + 1$? \vfill \itemitem{e)} Let $\Cal B' = \{1, (x + 1), (x + 1)^2, (x + 1)^3\}$. Show that $\Cal B'$ is a basis for $\Cal P_3$. What is the representation for $D$ with respect to $\Cal B'$? \end