18.100A final exam, spring 2007

You may use your book, but nothing else. Cite major theorems that you use.

1. Show that if \(\{a_n\} \) is an increasing sequence, and that \(a_n \to L \), then
 \[\sup\{a_n\} = L. \]

2. Using the definition of integrability, show that the function
 \[f(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases} \]
 is integrable on the interval \([-1, 1]\).

3. Which of the following are uniformly continuous?
 \[(a) \quad f(x) = 1/x, \quad x \in (1, \infty) \]
 \[(b) \quad f(x) = 1/x, \quad x \in (0, 1) \]
 [For each of the above, if you claim it is uniformly continuous, prove it. If you don’t think it is, just give me an intuitive explanation.]

4. Prove that the function
 \[g(x) = \int_0^x e^{-t^2} dt \]
 is continuous.

5. Write down the Taylor series for the function \(g(x) \) of problem 4. What is the radius of convergence of this power series? [Hint: the Taylor series for \(e^{-t^2} \) can be easily deduced by substituting in \(y = -t^2 \) in the Taylor series for \(e^y \).

6. Which of the following has uniform convergence? Justify your answers.
 \[(a): \] the series of functions
 \[\sum \frac{\sin(x)}{n^2} \]
 \[(b): \] the sequence of functions
 \[f_n(x) = \sqrt[2]{\frac{x}{n}} \]

7. Suppose that \(f \) and \(g \) are continuous functions on the interval \([0, 1]\). Show there is a point \(x \in [0, 1] \) which minimizes the vertical distance between the graphs of the functions. (In other words, show that there is a point \(x \) which minimizes the distance between \(f(x) \) and \(g(x) \).)

8. Suppose that \(f \) is differentiable on \((-\infty, \infty)\), and that \(f'(x) > 1 \) for all \(x \). Suppose furthermore that \(f(0) = 0 \). Show that
 \[f(x) > x \]
 for \(x > 0 \).