11.Integrate the acceleration vector:

$$
\overrightarrow{\mathbf{v}}(t)=\int \overrightarrow{\mathbf{a}}(t) d t=\left\langle e^{t}, 0,-\cos (t)\right\rangle+\overrightarrow{\mathbf{c}}
$$

where $\overrightarrow{\mathbf{c}}$ is an arbitrary constant vector. Since $\overrightarrow{\mathbf{v}}(0)=\langle 1,0,1\rangle$, we have

$$
\langle 1,0,-1\rangle+\overrightarrow{\mathbf{c}}=\langle 1,0,1\rangle
$$

Thus, $\overrightarrow{\mathbf{c}}=\langle 0,0,2\rangle$, and $\overrightarrow{\mathbf{v}}(t)=\left\langle e^{t}, 0,-\cos (t)+2\right\rangle$.
Integrate the velocity vector:

$$
\overrightarrow{\mathbf{r}}(t)=\int \overrightarrow{\mathbf{v}}(t) d t=\left\langle e^{t}, 0,-\sin (t)+2 t\right\rangle+\overrightarrow{\mathbf{d}}
$$

where $\overrightarrow{\mathbf{d}}$ is an arbitrary constant vector. Since $\overrightarrow{\mathbf{r}}(0)=\langle 0,0,0\rangle$, we have

$$
\langle 1,0,0\rangle+\overrightarrow{\mathbf{d}}=\langle 0,0,0\rangle .
$$

Thus, $\overrightarrow{\mathbf{d}}=\langle-1,0,0\rangle$. Putting everything together, we have

$$
\overrightarrow{\mathbf{r}}(t)=\left\langle e^{t}-1,0,2 t-\sin (t)\right\rangle
$$

12. The first derivatives of $\overrightarrow{\mathbf{r}}$ are

$$
\overrightarrow{\mathbf{r}}^{\prime}(t)=\langle-\sin (t), 1, \cos (t)\rangle \quad \overrightarrow{\mathbf{r}}^{\prime \prime}(t)=\langle-\cos (t), 0,-\sin (t)\rangle,
$$

and at $t=\frac{\pi}{2}$ they become $\overrightarrow{\mathbf{r}}^{\prime}\left(\frac{\pi}{2}\right)=\langle-1,1,0\rangle$ and $\overrightarrow{\mathbf{r}}^{\prime \prime}\left(\frac{\pi}{2}\right)=\langle 0,0,-1\rangle$. The binormal vector $\overrightarrow{\mathbf{B}}\left(\frac{\pi}{2}\right)$ is computed first by calculating

$$
\overrightarrow{\mathbf{b}}\left(\frac{\pi}{2}\right)=\overrightarrow{\mathbf{r}}^{\prime}\left(\frac{\pi}{2}\right) \times \overrightarrow{\mathbf{r}}^{\prime \prime}\left(\frac{\pi}{2}\right)=\langle-1,1,0\rangle \times\langle 0,0,-1\rangle=\langle-1,-1,0\rangle .
$$

and letting $\overrightarrow{\mathbf{B}}\left(\frac{\pi}{2}\right)=\frac{1}{\left|\overrightarrow{\mathbf{b}}\left(\frac{\pi}{2}\right)\right|} \overrightarrow{\mathbf{b}}\left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}}\langle-1,-1,0\rangle$.
Finally, the osculating plane is the plane normal to $\overrightarrow{\mathbf{b}}\left(\frac{\pi}{2}\right)=\langle-1,-1,0\rangle$ through $\overrightarrow{\mathbf{r}}\left(\frac{\pi}{2}\right)=$ $\left(0, \frac{\pi}{2}, 1\right)$ is $-x-(y-\pi / 2)=0$, or equivalently $x+y=\pi / 2$.
13.The direction vectors for the lines L_{1}, L_{2} are respectfully $\vec{v}_{1}=\langle 1,2,-3\rangle, \vec{v}_{2}=\langle 1,3,2\rangle$.

The lines are not parallel since $\vec{v}_{1} \neq c \vec{v}_{2}$ for any constant c.
Checking to see if there is any point of intersection, we write the lines in parametric equations. (Note that we need different parameters for the lines.)

$$
\begin{array}{cc}
L_{1}: & L_{2}: \\
x=2+t & x=1+s \\
y=3+2 t & y=-2+3 s \\
z=1-3 t & z=4+2 s
\end{array}
$$

A point of intersection $\left(x_{0}, y_{0}, z_{0}\right)$ would satisfy both equations. We have

$$
2+t=x_{0}=1+s
$$

for some values s and t. So $s=1+t$. We have also that

$$
3+2 t=y_{0}=-2+3 s
$$

and so $3+2 t=-2+3(1+t)$. Hence $t=2$, which also gives us $s=3$. These values for s and t give us $x_{0}=4$ and $y_{0}=7$ that satisfy the first couple lines of the system of equations. We check what z-value they each give:

$$
\begin{aligned}
& L_{1}: z=1-3 t=1-6=-5 \\
& L_{2}: z=4+2 s=4+6=10
\end{aligned}
$$

The points $(4,7,-5)$ and $(4,7,10)$ are different. So the lines do not intersect and are not parallel. They are skew.

