Name:

Instructor:

Math 20550, Old Exam 1 February 19, 2019

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points. Each partial credit problem is 12 points. You will receive 4 extra points.

PLE	ASE	MARK YOUR	ANSWERS	WITH AN X,	not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this box.	
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total:		

Multiple Choice

1.(6 pts) Which of the following vectors has the same direction as $\boldsymbol{v} = \langle -1, 2, 2 \rangle$ but has length 6?

- (a) $\langle -2, 4, 4 \rangle$ (b) $\langle 2, 4, 4 \rangle$ (c) $\langle 4, 2, 4 \rangle$
- (d) $\langle -\sqrt{2}, 2\sqrt{2}, 2\sqrt{2} \rangle$ (e) $\langle 0, 6, 0 \rangle$

2.(6 pts) Compute the vector projection of the vector $\langle 1, 0, 0 \rangle$ on the vector $\langle 2, -1, 1 \rangle$.

(a) $\frac{1}{3}\langle 1, 2, 3 \rangle$ (b) $\frac{1}{3}\langle 2, -1, 1 \rangle$ (c) $\langle 1, 1, -1 \rangle$ (d) $\langle 2, -1, 1 \rangle$ (e) $\langle 3, 1, 4 \rangle$

3.(6 pts) Determine which of the following expressions gives the length of the curve defined by $\mathbf{r}(t) = 2t\mathbf{i} + \cos(t)\mathbf{j} + 2\sin(t)\mathbf{k}$ between the points (0, 1, 0) and $(2\pi, -1, 0)$.

(a)
$$\int_{0}^{\pi} \sqrt{4t^{2} + \cos^{2}(t) + 4\sin^{2}(t)} dt$$
 (b) $\int_{0}^{2\pi} \sqrt{4 + \sin^{2}(t) + 4\cos^{2}(t)} dt$
(c) $\int_{0}^{2\pi} \sqrt{4t^{2} + \cos^{2}(t) + 4\sin^{2}(t)} dt$ (d) $\int_{0}^{\pi} (2t\mathbf{i} + \cos(t)\mathbf{j} + 2\sin(t)\mathbf{k}) dt$
(e) $\int_{0}^{\pi} \sqrt{4 + \sin^{2}(t) + 4\cos^{2}(t)} dt$

4.(6 pts) Find the volume of the parallelopiped determined by the vectors $\langle 3, 1, 4 \rangle$, $\langle 2, 0, 2 \rangle$ and $\langle -3, -1, 0 \rangle$.

(a) 8 (b)
$$-4$$
 (c) 20 (d) $\langle 2, -6, -2 \rangle$ (e) 4

5.(6 pts) What is the center of the sphere given by the equation $x^2 - 2x + y^2 - 4y + z^2 - 6z + 25 = 10$

- (a) (3,2,1) (b) (1,2,3)
- (c) This is not the equation of a sphere (d) (0,0,0)
- (e) (2, 1, 3)

6.(6 pts) The two curves

$$\mathbf{r}(t) = \left\langle t^2 - 1, \ln(t^2), t^4 - t^3 - t^2 + t \right\rangle$$
$$\mathbf{s}(t) = \left\langle 2\sqrt{t+3} - 4, \cos(\pi t) + 1, \sqrt{t} - 1 \right\rangle$$

intersect at the origin when t = 1. What is the cos of the angle of intersection?

(a)
$$\frac{\sqrt{3}}{2}$$
 (b) $-\frac{\sqrt{3}}{2}$ (c) $\frac{\sqrt{2}}{2}$ (d) $\frac{1}{2}$ (e) 1

 Name:

 Instructor:

7.(6 pts) The plane S contains the points (0, 1, 3), (2, 2, 2), and (3, 2, 1). Which of the following is an equation for S?

- (a) 2x 4y + 3z = 5 (b) x + y + z = 6 (c) x + 3y + z = 6
- (d) y + z = 4 (e) x y + z = 2

8.(6 pts) For which of the following function does the contour plot consist of concentric circles?

- (a) f(x,y) = 8 x y (b) $f(x,y) = e^{-(x^2 + y^2)}$ (c) $f(x,y) = e^{4x^2 y}$
- (d) $f(x,y) = \sin(x+y)$ (e) $f(x,y) = x^2 y^2$

Name: ______ Instructor: ______

9.(6 pts) Find symmetric equations for the tangent line to the helix $\mathbf{r}(t) = \langle 2\cos(t), \sin(t), t \rangle$ at the point $(0, 1, \pi/2)$.

(a)	$\frac{x}{-2} = \frac{z - \frac{\pi}{2}}{1}$ and $y = 0$	(b)	$\frac{x}{-2} = \frac{z - \frac{\pi}{2}}{1}$ and $y = 1$
(c)	$\frac{x}{2} = \frac{y-1}{2} = \frac{z - \frac{\pi}{2}}{1}$	(d)	$\frac{x}{-2} = \frac{y-1}{1} = \frac{z - \frac{\pi}{2}}{1}$
(e)	$\frac{x}{2} = \frac{z - \frac{\pi}{2}}{1}$ and $y = 1$		

10.(6 pts) The position vector of a flying cardinal at second t is given by $\mathbf{r}(t) = \langle 4t, \cos(3t), \sin(-3t) \rangle$. What is the normal component of its acceleration, a_N , at time t?

- (a) 9t (b) $\cos(3t)$ (c) 1
- (d) 9 (e) -9

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.) Find the area of the triangle with vertices P(1,4,6), Q(-2,5,-1) and R(1,-1,1).

12.(12 pts.) Let z = z(x, y) be the function of x, y given implicitly by the equation $x^2 + y^3 + z^4 + 2xyz = 1$

Find $\frac{\partial x}{\partial y}$ and $\frac{\partial y}{\partial z}$.

13.(12 pts.) The acceleration of a particle at time t is

 $\boldsymbol{a} = \left\langle 36t^2, e^t, \cos(t) \right\rangle$

Determine its location at time t = 1 if it is known that at time t = 0 the particle was passing through the origin with velocity $\langle 1, 1, 1 \rangle$.