Name: \qquad
Instructor:
Math 20550, Old Exam 1
February 19, 2019

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points. Each partial credit problem is 12 points.

You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(e)

| Please do NOT write in this box. | |
| ---: | :--- | :--- |
| Multiple Choice | $\boxed{ }$ |
| 11. | $\boxed{ }$ |
| 12. | $\boxed{ }$ |
| 13. | \square |
| Extra Points. | $\boxed{4}$ |
| Total: | \square |

Name: \qquad
Instructor: \qquad
Multiple Choice

1. (6 pts) Which of the following vectors has the same direction as $\boldsymbol{v}=\langle-1,2,2\rangle$ but has length 6 ?
(a) $\langle-2,4,4\rangle$
(b) $\langle 2,4,4\rangle$
(c) $\langle 4,2,4\rangle$
(d) $\langle-\sqrt{2}, 2 \sqrt{2}, 2 \sqrt{2}\rangle$
(e) $\langle 0,6,0\rangle$
2. (6 pts) Compute the vector projection of the vector $\langle 1,0,0\rangle$ on the vector $\langle 2,-1,1\rangle$.
(a) $\frac{1}{3}\langle 1,2,3\rangle$
(b) $\frac{1}{3}\langle 2,-1,1\rangle$
(c) $\langle 1,1,-1\rangle$
(d) $\langle 2,-1,1\rangle$
(e) $\langle 3,1,4\rangle$

Name: \qquad
Instructor: \qquad
3. (6 pts) Determine which of the following expressions gives the length of the curve defined by $\boldsymbol{r}(t)=2 t \boldsymbol{i}+\cos (t) \boldsymbol{j}+2 \sin (t) \boldsymbol{k}$ between the points $(0,1,0)$ and $(2 \pi,-1,0)$.
(a) $\int_{0}^{\pi} \sqrt{4 t^{2}+\cos ^{2}(t)+4 \sin ^{2}(t)} d t$
(b) $\int_{0}^{2 \pi} \sqrt{4+\sin ^{2}(t)+4 \cos ^{2}(t)} d t$
(c) $\int_{0}^{2 \pi} \sqrt{4 t^{2}+\cos ^{2}(t)+4 \sin ^{2}(t)} d t$
(d) $\int_{0}^{\pi}(2 t \boldsymbol{i}+\cos (t) \boldsymbol{j}+2 \sin (t) \boldsymbol{k}) d t$
(e) $\int_{0}^{\pi} \sqrt{4+\sin ^{2}(t)+4 \cos ^{2}(t)} d t$
4. $(6 \mathrm{pts})$ Find the volume of the parallelopiped determined by the vectors $\langle 3,1,4\rangle,\langle 2,0,2\rangle$ and $\langle-3,-1,0\rangle$.
(a) 8
(b) -4
(c) 20
(d) $\langle 2,-6,-2\rangle(\mathrm{e}) \quad 4$

Name:

Instructor: \qquad
5. (6 pts) What is the center of the sphere given by the equation

$$
x^{2}-2 x+y^{2}-4 y+z^{2}-6 z+25=10
$$

(a) $(3,2,1)$
(b) $(1,2,3)$
(c) This is not the equation of a sphere
(d) $(0,0,0)$
(e) $(2,1,3)$
6. (6 pts) The two curves

$$
\begin{aligned}
& \boldsymbol{r}(t)=\left\langle t^{2}-1, \ln \left(t^{2}\right), t^{4}-t^{3}-t^{2}+t\right\rangle \\
& \boldsymbol{s}(t)=\langle 2 \sqrt{t+3}-4, \cos (\pi t)+1, \sqrt{t}-1\rangle
\end{aligned}
$$

intersect at the origin when $t=1$. What is the cos of the angle of intersection?
(a) $\frac{\sqrt{3}}{2}$
(b) $-\frac{\sqrt{3}}{2}$
(c) $\frac{\sqrt{2}}{2}$
(d) $\frac{1}{2}$
(e) 1

Name:
Instructor: \qquad
7. $(6 \mathrm{pts})$ The plane S contains the points $(0,1,3),(2,2,2)$, and $(3,2,1)$. Which of the following is an equation for S ?
(a) $2 x-4 y+3 z=5$
(b) $x+y+z=6$
(c) $x+3 y+z=6$
(d) $y+z=4$
(e) $x-y+z=2$
8. (6 pts) For which of the following function does the contour plot consist of concentric circles?
(a) $f(x, y)=8-x-y$
(b) $\quad f(x, y)=e^{-\left(x^{2}+y^{2}\right)}$
(c) $\quad f(x, y)=e^{4 x^{2}-y}$
(d) $f(x, y)=\sin (x+y)$
(e) $\quad f(x, y)=x^{2}-y^{2}$

Name: \qquad
Instructor: \qquad
9. (6 pts) Find symmetric equations for the tangent line to the helix $\boldsymbol{r}(t)=\langle 2 \cos (t), \sin (t), t\rangle$ at the point $(0,1, \pi / 2)$.
(a) $\frac{x}{-2}=\frac{z-\frac{\pi}{2}}{1}$ and $y=0$
(b) $\frac{x}{-2}=\frac{z-\frac{\pi}{2}}{1}$ and $y=1$
(c) $\frac{x}{2}=\frac{y-1}{2}=\frac{z-\frac{\pi}{2}}{1}$
(d) $\frac{x}{-2}=\frac{y-1}{1}=\frac{z-\frac{\pi}{2}}{1}$
(e) $\frac{x}{2}=\frac{z-\frac{\pi}{2}}{1}$ and $y=1$
10. (6 pts) The position vector of a flying cardinal at second t is given by $\boldsymbol{r}(t)=$ $\langle 4 t, \cos (3 t), \sin (-3 t)\rangle$. What is the normal component of its acceleration, a_{N}, at time t ?
(a) $9 t$
(b) $\cos (3 t)$
(c) 1
(d) 9
(e) $\quad-9$

Name:
Instructor:

Partial Credit

You must show your work on the partial credit problems to receive credit!
11. (12 pts.) Find the area of the triangle with vertices $P(1,4,6), Q(-2,5,-1)$ and $R(1,-1,1)$.

Name:

Instructor:
12.(12 pts.) Let $z=z(x, y)$ be the function of x, y given implicitly by the equation

$$
x^{2}+y^{3}+z^{4}+2 x y z=1
$$

Find $\frac{\partial x}{\partial y}$ and $\frac{\partial y}{\partial z}$.

Name:
Instructor:
13. (12 pts.) The acceleration of a particle at time t is

$$
\boldsymbol{a}=\left\langle 36 t^{2}, e^{t}, \cos (t)\right\rangle
$$

Determine its location at time $t=1$ if it is known that at time $t=0$ the particle was passing through the origin with velocity $\langle 1,1,1\rangle$.

