Multiple Choice

1. (6 pts) Find the absolute maximum and minimum of $f(x, y)=4 y+x^{2}-2 x+1$ on the closed triangular region with vertices $(0,0),(2,0)$ and $(0,2)$.
(a) maximum value $=9$, minimum value $=0$
(b) maximum value $=8$, minimum value $=1$
(c) maximum value $=10$, minimum value $=-1$
(d) maximum value $=1$, minimum value $=0$
(e) maximum value $=4$, minimum value $=0$
2. $(6 \mathrm{pts})$ Find the equation of the tangent plane to the surface $x z+\ln (2 x+y)=5$ at the point $(-1,3,-5)$.
(a) $3 x+y-z-5=0$
(b) $-3 x+y-z-11=0$
(c) $-4 x+y-z-4=0$
(d) $4 x-y+z+12=0$
(e) $5 x-y+z+13=0$
3. (6 pts) If $z=f(x, y)$, where f is differentiable, and $x=g(t), y=h(t), g(1)=3$, $h(1)=4, g^{\prime}(1)=-2, h^{\prime}(1)=5, f_{x}(3,4)=7$ and $f_{y}(3,4)=6$. Find $d z / d t$ when $t=1$.
(a) 32
(b) 23
(c) 16
(d) 13
(e) 44
4. (6 pts) Find the directional derivative of the function $f(x, y)=x^{2}+y^{3}$ at the point $(2,1)$ in the direction $\langle 1,1\rangle$
(a) $\frac{3}{\sqrt{2}}$
(b) None of the above
(c) $\frac{7}{\sqrt{2}}$
(d) 7
(e) 3
5. (6 pts) For a function $f(x, y)$, suppose that $f_{x x}=x^{2}$ and $D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=$ $x^{2} y^{2}-2$. Which is true for the points $P(1,1)$ and $Q(1,2)$ where P and Q are critical points of f.
(a) $\quad P$ is a local min and Q is a local max.
(b) P is a saddle point and Q is a local max.
(c) $\quad P$ is a local max and Q is a local min.
(d) $\quad P$ is a saddle point and Q is a local min.
(e) None of the above
6. (6 pts$)$ What is the equation of the tangent line to the curve of intersection between the two surfaces defined by $z=x^{2}+y^{2}$ and $x^{2}+2 y^{2}+z^{2}=7$ at the point $(-1,1,2)$.
(a) $\langle x, y, z\rangle=\langle-1,1,2\rangle+t\langle 1,2,1\rangle$
(b) $\langle x, y, z\rangle=\langle-1,1,2\rangle+t\langle-2,2,1\rangle$
(c) $\langle x, y, z\rangle=\langle-1,1,2\rangle+t\langle 12,10,-4\rangle$
(d) None of the above
(e) $\langle x, y, z\rangle=\langle-1,1,2\rangle+t\langle-2,4,4\rangle$
7. (6 pts) Find the maximum rate of change of $f(x, y)=3 e^{x y}$ at the point $(2,0)$ and the direction in which it occurs.
(a) Rate of change $=36$ in the direction $\langle-1,0\rangle$
(b) Rate of change $=3$ in the direction $\langle 1,1\rangle$
(c) Rate of change $=\sqrt{3}$ in the direction $\langle 1,0\rangle$
(d) Rate of change $=\sqrt{6}$ in the direction $\langle 1,-1\rangle$
(e) Rate of change $=6$ in the direction $\langle 0,1\rangle$
8. (6 pts) Find absolute maximum and minimum of $3 x-y-3 z$ subject to the constraints $x+y-z=0$ and $x^{2}+2 z^{2}=6$.
(a) $\quad \operatorname{Max}=3 \sqrt{5}, \operatorname{Min}=0$
(b) $\operatorname{Max}=15, \operatorname{Min}=5$
(c) $\operatorname{Max}=6, \operatorname{Min}=-1$
(d) $\operatorname{Max}=12, \operatorname{Min}=-12$
(e) $\operatorname{Max}=5, \operatorname{Min}=-3 \sqrt{5}$
9. (6 pts) Evaluate the iterated integral

$$
\int_{0}^{2} \int_{y}^{2 y} 2 x y d x d y
$$

(a) 4
(b) 2
(c) 12
(d) 3
(e) 5
10. (6 pts) Which integral represents the volume of the solid below the plane $x+y+z=3$ and over the rectangle $[0,2] \times[0,1]$.
(a) $\int_{0}^{1} \int_{0}^{2} x+y+z d y d x$
(b) $\int_{0}^{2} \int_{0}^{1} 3-x-y d y d x$
(c) $\int_{0}^{2} \int_{0}^{1} 1 d y d x$
(d) $\int_{0}^{1} \int_{0}^{2} 3-x-y d y d x$
(e) $\int_{0}^{2} \int_{0}^{1} x+y+z d y d x$

Partial Credit
You must show your work on the partial credit problems to receive credit!

11. (12 pts) Find all critical points of of $f(x, y)=x^{3}-x y+y^{2} / 2$ and classify them using the second derivative test.
12.(12 pts) Use Lagrange Multipliers to find extrema values of the funciton $f(x, y)=$ $2 x^{3}-y^{3}$ subject to the contraint $x^{2}+y^{2}=5$.
12. (12 pts) Find the volume of the solid that lies under the graph of $f(x, y)=x e^{x y}$ and above the rectangle $R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}$.

Name: \qquad
Instructor: ANSWERS
Math 20550, Old Exam 2
March 21, 2017

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes..
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 7 pages of the test.
- Each multiple choice question is 6 points, each partial credit problem is 12 points.

You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. ($)^{\prime}$	(b)	(c)	(d)	(e)
2. (a)	($)$	(c)	(d)	(e)
3. (a)	(b)	($)$	(d)	(e)
4. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)
5. (a)	(b)	(c)	($)$	(e)
6. (a)	(b)	($)$	(d)	(e)
7. (a)	(b)	(c)	(d)	(${ }^{\text {) }}$
8. (a)	(b)	(c)	($)$	(e)
9. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)
10. (a)	($)$	(c)	(d)	(e)

Please do NOT write in this box.	
Multiple Choice	$\boxed{ }$
11.	$\boxed{ }$
12.	$\boxed{ }$
13.	\square
Extra Points.	$\boxed{4}$
Total:	\square

11.First we must find critical points, so we want to solve the system of equations:

$$
\begin{aligned}
& f_{x}=3 x^{2}-y=0 \\
& f_{y}=-x+y=0
\end{aligned}
$$

We get that $y=3 x^{2}$ from the first equation and then plugging into the 2 nd equation we get $-x+3 x^{2}=0$ and so $x=0$ or $-1+3 x=0$ so $x=0$ or $x=1 / 3$.

When $x=0$, we get that $y=0$ so we get the critical point $(0,0)$. When $x=1 / 3$ we get that $y=1 / 3$ so we get the critical point $(1 / 3,1 / 3)$.

Now we apply the 2nd derviative test, $f_{x x}=6 x, f_{x y}=-1, f_{y y}=1$. So $D=6 x-1$. At $(0,0), D=-1$ so $(0,0)$ is a saddle point. At $(1 / 3,1 / 3), D=2$ and $f_{x x}=3$ so $(1 / 3,1 / 3)$ is a local minimum.
12.The Lagrange system of equations is :

$$
\begin{aligned}
6 x^{2} & =2 x \lambda \\
-3 y^{2} & =2 y \lambda \\
x^{2}+y^{2} & =5
\end{aligned}
$$

Case 1: Assume $x \neq 0$ and $y \neq 0$. Then we can divide the first two equations by $2 x$ and y respectively, to get $3 x=\lambda$ and $-3 y=2 \lambda$. Solving for x and y in terms of λ we get $x=\lambda / 3$ and $y=2 \lambda /-3$. Plugging these into the third equation we get that $\lambda^{2} / 9+4 \lambda^{2} / 9=5$ which simplifies to $5 \lambda^{2} / 9=5$ and so $\lambda^{2}=9$ or $\lambda= \pm 3$.

So when $\lambda=3$ we get $x=1$, and $y=-2$ so we must check the point $(1,-2)$.
When $\lambda=-3$ we get $x=-1$ and $y=2$ and so we must check the point $(-1,2)$.
Case 2: Assume $x=0$. Then the first equation will be satisfied for any λ value. And the third equation gives us that $y= \pm \sqrt{5}$. (The 2 nd equation will give us that $\lambda=-15 / 2 \sqrt{5}$ but this is irrelavant.). So we must check the points $(0, \sqrt{5})$ and $(0,-\sqrt{5})$.

Case 3: Assume $y=0$ as in case 2 we will get that $x= \pm \sqrt{5}$ from equation 3 , so we need to check the points $(\sqrt{5}, 0)$ and $(-s q r t 5,0)$.

Now we check all the points found in each of the cases:

$$
\begin{array}{rlrl}
f(1,-2) & =2-(-8) & & =10 \\
f(-1,2) & =-2-8 & & =-10 \\
f(0, \sqrt{5}) & =0-5 \sqrt{5} & =-5 \sqrt{5} \\
f(0,-\sqrt{5}) & =0-(-5 \sqrt{5} & & =5 \sqrt{5} \\
f(\sqrt{5}, 0) & =10 \sqrt{5}-0 & & =10 \sqrt{5} \\
f(-\sqrt{5}, 0) & =-10 \sqrt{5}-0 & =-10 \sqrt{5}
\end{array}
$$

So the maximum value is $10 \sqrt{5}$ and the minimum value is $-10 \sqrt{5}$.
13. We want to compute the integral $\int_{0}^{1} \int_{0}^{1} x e^{x y} d y d x$ (as integrating with respect to x first will be less desirable).

So we get

$$
\left.\int_{0}^{1} e^{x y}\right|_{0} ^{1} d x=\int_{0}^{1} e^{x}-1 d x=e^{x}-\left.x\right|_{0} ^{1}=e-1-(1-0)=e-2
$$

