Multiple Choice

1. (6 pts) Use cylindrical coordinates to evaluate $\iiint_{E}\left(x^{2}+y^{2}\right) d V$, where

$$
E=\left\{(x, y, z) \mid \sqrt{x^{2}+y^{2}} \leq z \leq 2\right\} .
$$

(a) $\frac{3 \pi}{4}$
(b) $\frac{\pi}{4}$
(c) $\frac{4 \pi}{9}$
(d) $\frac{16 \pi}{5}$
(e) $\frac{4 \pi}{3}$
2. $(6 \mathrm{pts})$ Evaluate $\int_{C} x y d s$, where C is given by $\vec{r}(t)=\langle 4 \cos t, 4 \sin t, 3 t\rangle$ for $0 \leq t \leq \frac{\pi}{2}$.
(a) 10
(b) 40
(c) 5
(d) 0
(e) $\quad-40$
3. (6 pts) Find the total mass of the laminated (i.e., thin) region D having density $\rho(x, y)=\sqrt{x^{2}+y^{2}}$, where

$$
D=\left\{(x, y) \mid x^{2}+y^{2} \leq 4, y \geq 0\right\}
$$

(a) $\frac{4 \pi}{3}$
(b) $\frac{8 \pi}{3}$
(c) $\frac{3 \pi}{2}$
(d) $\frac{4}{3}$
(e) $\frac{2 \pi}{3}$
4. (6 pts) Use spherical coordinates to evaluate $\iiint_{E} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V$, where

$$
E=\left\{(x, y, z) \mid y \geq 0, z \geq 0, x^{2}+y^{2}+z^{2} \leq 1\right\}
$$

(a) $4 \pi e$
(b) 0
(c) $\frac{\pi}{3} e$
(d) $\frac{\pi}{3}(e-1)$
(e) $\frac{4 \pi}{3}(e-1)$
5. (6 pts) Let $\vec{F}=\left\langle x z, x y z,-y^{2}\right\rangle$. Compute $\operatorname{curl} \vec{F}$.
(a) $\langle-y(2+x), x, y z\rangle$
(b) 0
(c) $z+x y$
(d) $\langle x,-y(2+x), y z\rangle$
(e) $\langle-y(2+x),-x, y z\rangle$
6. (6 pts) Use a double integral to find the area enclosed by one loop of the four-leaved rose $r=\sin (2 \theta)$. The region inside the loop is described in polar coordinates by $0 \leq \theta \leq \frac{\pi}{2}$ and $0 \leq r \leq \sin (2 \theta)$.
(a) $\frac{\pi}{2}$
(b) 0
(c) $-\frac{\pi}{2}$
(d) $\frac{\pi}{8}$
(e) $\frac{\pi}{4}$
7. (6 pts) Find the work $\int_{C} \vec{F} \cdot d \vec{r}$ done by the force field $\vec{F}=\langle x y, y z, z x\rangle$ in moving a particle along the curve C given by $\vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ for $-1 \leq t \leq 1$.
(a) $\frac{1}{4}$
(b) $\frac{5}{7}$
(c) $\frac{1}{2}$
(d) $\frac{10}{7}$
(e) $\frac{27}{28}$
8. $(6 \mathrm{pts})$ Use Green's theorem to evaluate $\int_{C}\left(\left(3 y-e^{x^{2}}\right) d x+\left(7 x+\sqrt{y^{99}+y+100}\right) d y\right)$ where C is the circle $x^{2}+y^{2}=9$ with the counter-clockwise orientation.
(a) 3π
(b) 36π
(c) 0
(d) -36π
(e) 7π
9. (6 pts) Let $x=2 u$ and $y=-3 v$. Then $\int_{-3}^{3} \int_{-2}^{2} f(x, y) d x d y$ can be written as:
(a) $\frac{1}{6} \int_{-1}^{1} \int_{-1}^{1} f(2 u,-3 v) d u d v$
(b) $6 \int_{-3}^{3} \int_{-2}^{2} f(2 u,-3 v) d u d v$
(c) $6 \int_{-1}^{1} \int_{-1}^{1} f(2 u,-3 v) d u d v$
(d) $-4 \int_{-1}^{1} \int_{-1}^{1} f(2 u,-3 v) d u d v$
(e) $-6 \int_{-1}^{1} \int_{-1}^{1} f(2 u,-3 v) d u d v$
10. (6 pts)Which of the following vector fields cannot be written as curl \vec{F} ?
(a) $\langle-x-y+1, x y-1,-x z+y+z\rangle$
(b) $\langle-y,-z,-x\rangle$
(c) $\langle-y \cos (z),-z \cos (x),-x \cos (y)\rangle$
(d) $\langle 2 y z, x y z, 3 x y\rangle$
(e) $\langle 1-2 z, 1-2 x, 1-2 y\rangle$

Partial Credit
You must show your work on the partial credit problems to receive credit!
11. (12 pts.) Let $\vec{F}=\left\langle y^{2}+1,2 x y+2 y+e^{3 z}, 3 y e^{3 z}+3 z^{2}\right\rangle$.
(a) Find curl \vec{F}.
(b) Find f such that $\nabla f=\vec{F}$.
(c) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where C is any smooth curve beginning at $(1,0,0)$ and ending at $(0,1,0)$.
12.(12 pts.)Let E be the tetrahedron enclosed by the coordinate planes $x=0, y=0$, $z=0$ and the plane $2 x+y+z=2$. Assume the density function is $\rho(x, y, z)=1$. Write an iterated integral (with limits) for the moment of the solid E about the $y z$-plane. (You do NOT need to compute this iterated integral.)
13. (12 pts.) Use the transformation $x=\sqrt{3} u-v, y=\sqrt{3} u+v$ to evaluate the integral $\iint_{R}\left(x^{2}-x y+y^{2}\right) d A$, where R is the region bounded by the ellipse $x^{2}-x y+y^{2}=3$.

Name: \qquad
Instructor: ANSWERS
Math 20550, Last Year Exam 3 April 25, 2017

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 4 pages of the test.
- Each multiple choice question is 6 points. Each partial credit problem is 12 points. You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1.	(a)	(b)	(c)	(\bullet)
2.	(a)	(\bullet)	(c)	(d)
3.	(a)	(\bullet)	(c)	(d)
4.	(a)	(b)	(c)	(\bullet)
5.	(\bullet)	(b)	(c)	(d)
6.	(a)	(b)	(c)	(\bullet)
7.	(a)	(b)	(c)	(\bullet)
8.	(a)	(\bullet)	(c)	(d)
9.	(a)	(b)	(\bullet)	(e)
10.	(a)	(b)	(c)	(\bullet)

Please do NOT write in this box.	
Multiple Choice	_
11.	
12.	
13.	\square
Extra Points.	$\boxed{4}$
Total:	\square

11.

(a)

$$
\begin{aligned}
& \operatorname{curl} \vec{F}=\langle\partial x, \partial y, \partial z\rangle \times\left\langle y^{2}+1,2 x y+2 y+e^{3 z}, 3 y e^{3 z}+3 z^{2}\right\rangle \\
&= \operatorname{det}\left(\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
\partial x & \partial y & \partial z \\
y^{2}+1 & 2 x y+2 y+e^{3 z} & 3 y e^{3 z}+3 z^{2}
\end{array}\right) \\
&=\left(3 e^{3 z}-3 e^{3 z}\right) \overrightarrow{\mathbf{i}}-(0-0) \overrightarrow{\mathbf{j}}+(2 y-2 y) \overrightarrow{\mathbf{k}} \\
&=\langle 0,0,0\rangle .
\end{aligned}
$$

(b) We seek a FUNCTION f such that $\nabla f=\vec{F}$, i.e., such that

$$
\begin{aligned}
& \text { (a) } f_{x}=y^{2}+1 \\
& \text { (b) } f_{y}=2 x y+2 y+e^{3 z} \\
& \text { (c) } f_{z}=3 y e^{3 z}+3 z^{2} .
\end{aligned}
$$

Integrating (a) with respect to x we get

$$
\begin{equation*}
f(x, y, z)=x y^{2}+x+h(y, z) \tag{1}
\end{equation*}
$$

where the functions h may depend on y and z only and does not depend on x.
We differentiate the function f from (1) with respect to y and using (b) set equal to $2 x y+2 y+e^{3 z}$:

$$
2 x y+h_{y}(y, z)=2 x y+2 y+e^{3 z}
$$

hence

$$
h_{y}(y, z)=2 y+e^{3 z} .
$$

Integrating the above expression with respect to y we get

$$
h(y, z)=y^{2}+y e^{3 z}+g(z),
$$

where the functions g may depend on z only and does not depend on x, y. From (1) we obtain

$$
\begin{equation*}
f(x, y, z)=x y^{2}+x+y^{2}+y e^{3 z}+g(z) \tag{2}
\end{equation*}
$$

We differentiate the function f from (2) with respect to z and using (c) set equal to $3 y e^{3 z}+3 z^{2}$:

$$
3 y e^{3 z}+g_{z}(z)=3 y e^{3 z}+3 z^{2},
$$

hence

$$
g_{z}(z)=3 z^{2}
$$

and

$$
g(z)=z^{3}+C .
$$

We choose $C=0$ and use (2) to obtain

$$
f(x, y, z)=x y^{2}+x+y^{2}+y e^{3 z}+z^{3}
$$

(c) Finally, the fundamental theorem of line integrals tells us that

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \nabla f \cdot d \vec{r}=f(0,1,0)-f(1,0,0)=2-1=1
$$

12.In the $x y$-plane the condition $2 x+y+z=2$ becomes $2 x+y=2$ so the x-intercept is $x=1$.

Thus the base of E in the $x y$-plane is the region D bounded by the lines $x=0, y=0$, $y=2-2 x$, that we can write as $D=\{(x, y) \mid 0 \leq 1,0 \leq y \leq 2-2 x\}$.

The region E can be describes as the region that lies above D and below the plane $z=2-2 x-y$.

The moment is therefore

$$
\iiint_{E} x d V=\int_{0}^{1} \int_{0}^{2-2 x} \int_{0}^{2-2 x-y} x d z d y d x
$$

13. We denote by $f(x, y)$ the function $f(x, y)=x^{2}-x y+y^{2}$.

Thus we need to evaluate

$$
\iint_{R} f(x, y) d A
$$

The ellipse $x^{2}-x y+y^{2}=3$, which bounds the region R, when written in terms of u and v becomes

$$
x^{2}-x y+y^{2}=(\sqrt{3} u-v)^{2}-(\sqrt{3} u-v)(\sqrt{3} u+v)+(\sqrt{3} u+v)^{2}=3\left(u^{2}+v^{2}\right)=3
$$

which is the circle S of radius 1 . Hence under the change of variables the region R in the (x, y)-plane is transformed to the unit disk D in the (u, v)-plane.

The function $f(x, y)$ in terms of u and v is

$$
f=x^{2}-x y+y^{2}=(\sqrt{3} u-v)^{2}-(\sqrt{3} u-v)(\sqrt{3} u+v)+(\sqrt{3} u+v)^{2}=3\left(u^{2}+v^{2}\right) .
$$

The Jacobian is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
\sqrt{3} & -1 \\
\sqrt{3} & 1
\end{array}\right|=2 \sqrt{3}
$$

So

$$
\begin{aligned}
\iint_{R}\left(x^{2}-x y+y^{2}\right) d x d y=\iint_{D} 3\left(u^{2}\right. & \left.+v^{2}\right)|2 \sqrt{3}| d u d v \\
& =6 \sqrt{3} \int_{0}^{2 \pi} \int_{0}^{1} r^{2} r d r d \theta=6 \sqrt{3} \int_{0}^{2 \pi} \frac{1}{4} d \theta=3 \sqrt{3} \pi
\end{aligned}
$$

