Multiple Choice

1.(6 pts)Use cylindrical coordinates to evaluate $\iiint_E (x^2 + y^2) \, dV$, where $E = \{(x, y, z) \mid \sqrt{x^2 + y^2} \le z \le 2\}.$

(a)
$$\frac{3\pi}{4}$$
 (b) $\frac{\pi}{4}$ (c) $\frac{4\pi}{9}$ (d) $\frac{16\pi}{5}$ (e) $\frac{4\pi}{3}$

2.(6 pts) Evaluate
$$\int_C xy \, ds$$
, where C is given by $\vec{r}(t) = \langle 4\cos t, 4\sin t, 3t \rangle$ for $0 \le t \le \frac{\pi}{2}$.
(a) 10 (b) 40 (c) 5 (d) 0 (e) -40

3.(6 pts) Find the total mass of the laminated (i.e., thin) region D having density $\rho(x,y) = \sqrt{x^2 + y^2}$, where

$$D = \{(x, y) \mid x^2 + y^2 \le 4, y \ge 0\}.$$

(a)
$$\frac{4\pi}{3}$$
 (b) $\frac{8\pi}{3}$ (c) $\frac{3\pi}{2}$ (d) $\frac{4}{3}$ (e) $\frac{2\pi}{3}$

4.(6 pts) Use spherical coordinates to evaluate $\iiint_E e^{(x^2+y^2+z^2)^{3/2}} dV$, where $E = \{(x, y, z) \mid y \ge 0, z \ge 0, x^2 + y^2 + z^2 \le 1\}.$

(a)
$$4\pi e$$
 (b) 0 (c) $\frac{\pi}{3}e$ (d) $\frac{\pi}{3}(e-1)$ (e) $\frac{4\pi}{3}(e-1)$

5.(6 pts) Let $\vec{F} = \langle xz, xyz, -y^2 \rangle$. Compute curl \vec{F} .

(a)
$$\langle -y(2+x), x, yz \rangle$$
 (b) 0 (c) $z + xy$
(d) $\langle x, -y(2+x), yz \rangle$ (e) $\langle -y(2+x), -x, yz \rangle$

6.(6 pts) Use a double integral to find the area enclosed by one loop of the four-leaved rose $r = \sin(2\theta)$. The region inside the loop is described in polar coordinates by $0 \le \theta \le \frac{\pi}{2}$ and $0 \le r \le \sin(2\theta)$.

(a)
$$\frac{\pi}{2}$$
 (b) 0 (c) $-\frac{\pi}{2}$ (d) $\frac{\pi}{8}$ (e) $\frac{\pi}{4}$

7.(6 pts) Find the work $\int_C \vec{F} \cdot d\vec{r}$ done by the force field $\vec{F} = \langle xy, yz, zx \rangle$ in moving a particle along the curve C given by $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ for $-1 \le t \le 1$.

(a)
$$\frac{1}{4}$$
 (b) $\frac{5}{7}$ (c) $\frac{1}{2}$ (d) $\frac{10}{7}$ (e) $\frac{27}{28}$

8.(6 pts)Use Green's theorem to evaluate $\int_C \left((3y - e^{x^2})dx + (7x + \sqrt{y^{99} + y + 100})dy \right)$ where C is the circle $x^2 + y^2 = 9$ with the counter-clockwise orientation.

(a) 3π (b) 36π (c) 0 (d) -36π (e) 7π

9.(6 pts) Let x = 2u and y = -3v. Then $\int_{-3}^{3} \int_{-2}^{2} f(x, y) dx dy$ can be written as: (a) $\frac{1}{6} \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$ (b) $6 \int_{-3}^{3} \int_{-2}^{2} f(2u, -3v) du dv$ (c) $6 \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$ (d) $-4 \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$ (e) $-6 \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$ **10.**(6 pts)Which of the following vector fields cannot be written as curl \vec{F} ?

- (a) $\langle -x y + 1, xy 1, -xz + y + z \rangle$ (b) $\langle -y, -z, -x \rangle$
- (c) $\langle -y\cos(z), -z\cos(x), -x\cos(y) \rangle$ (d) $\langle 2yz, xyz, 3xy \rangle$

(e)
$$\langle 1 - 2z, 1 - 2x, 1 - 2y \rangle$$

Partial Credit

You must show your work on the partial credit problems to receive credit!

- **11.**(12 pts.)Let $\vec{F} = \langle y^2 + 1, 2xy + 2y + e^{3z}, 3ye^{3z} + 3z^2 \rangle$.
- (a) Find curl \vec{F} .
- (b) Find f such that $\nabla f = \vec{F}$.
- (c) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is any smooth curve beginning at (1,0,0) and ending at (0,1,0).

12.(12 pts.)Let E be the tetrahedron enclosed by the coordinate planes x = 0, y = 0, z = 0 and the plane 2x + y + z = 2. Assume the density function is $\rho(x, y, z) = 1$. Write an iterated integral (with limits) for the moment of the solid E about the yz-plane. (You do NOT need to compute this iterated integral.)

13.(12 pts.)Use the transformation $x = \sqrt{3}u - v$, $y = \sqrt{3}u + v$ to evaluate the integral $\iint_R (x^2 - xy + y^2) dA$, where R is the region bounded by the ellipse $x^2 - xy + y^2 = 3$.

Name: _____

Instructor: <u>ANSWERS</u>

Math 20550, Last Year Exam 3 April 25, 2017

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 4 pages of the test.
- Each multiple choice question is 6 points. Each partial credit problem is 12 points. You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(a)	(b)	(c)	(ullet)	(e)	
2.	(a)	(ullet)	(c)	(d)	(e)	
3.	(a)	(ullet)	(c)	(d)	(e)	
4.	(a)	(b)	(c)	(ullet)	(e)	
5.	(ullet)	(b)	(c)	(d)	(e)	
6.	(a)	(b)	(c)	(ullet)	(e)	
7.	(a)	(b)	(c)	(ullet)	(e)	
8.	(a)	(ullet)	(c)	(d)	(e)	
9.	(a)	(b)	(ullet)	(d)	(e)	
10.	(a)	(b)	(c)	(ullet)	(e)	

Please do NOT	write in this box.
Multiple Choice	
11.	
12.	
13.	
Extra Points.	4
Total:	

 $\begin{aligned} \operatorname{curl} \vec{F} &= \langle \partial x, \partial y, \partial z \rangle \times \langle y^2 + 1, 2xy + 2y + e^{3z}, 3ye^{3z} + 3z^2 \rangle \\ &= \det \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial x & \partial y & \partial z \\ y^2 + 1 & 2xy + 2y + e^{3z} & 3ye^{3z} + 3z^2 \end{pmatrix} \\ &= (3e^{3z} - 3e^{3z})\vec{i} - (0 - 0)\vec{j} + (2y - 2y)\vec{k} \\ &= \langle 0, 0, 0 \rangle. \end{aligned}$

(b) We seek a FUNCTION f such that $\nabla f = \vec{F}$, i.e., such that

(a)
$$f_x = y^2 + 1$$

(b) $f_y = 2xy + 2y + e^{3z}$
(c) $f_z = 3ye^{3z} + 3z^2$.

Integrating (a) with respect to x we get

(1)
$$f(x, y, z) = xy^2 + x + h(y, z)$$

where the functions h may depend on y and z only and does not depend on x.

We differentiate the function f from (1) with respect to y and using (b) set equal to $2xy + 2y + e^{3z}$:

$$2xy + h_y(y, z) = 2xy + 2y + e^{3z}$$

hence

$$h_y(y,z) = 2y + e^{3z}.$$

Integrating the above expression with respect to y we get

$$h(y, z) = y^2 + ye^{3z} + g(z),$$

where the functions g may depend on z only and does not depend on x, y. From (1) we obtain

(2)
$$f(x, y, z) = xy^{2} + x + y^{2} + ye^{3z} + g(z).$$

We differentiate the function f from (2) with respect to z and using (c) set equal to $3ye^{3z} + 3z^2$:

$$3ye^{3z} + g_z(z) = 3ye^{3z} + 3z^2$$

hence

$$g_z(z) = 3z^2,$$
$$g(z) = z^3 + C.$$

and

We choose C = 0 and use (2) to obtain

$$f(x, y, z) = xy^{2} + x + y^{2} + ye^{3z} + z^{3}$$

(c) Finally, the fundamental theorem of line integrals tells us that

$$\int_C \vec{F} \cdot d\vec{r} = \int_C \nabla f \cdot d\vec{r} = f(0, 1, 0) - f(1, 0, 0) = 2 - 1 = 1$$

12.In the *xy*-plane the condition 2x + y + z = 2 becomes 2x + y = 2 so the *x*-intercept is x = 1.

Thus the base of E in the xy-plane is the region D bounded by the lines x = 0, y = 0, y = 2 - 2x, that we can write as $D = \{(x, y) | 0 \le 1, 0 \le y \le 2 - 2x\}$.

The region E can be describes as the region that lies above D and below the plane z = 2 - 2x - y.

The moment is therefore

$$\iiint_E x \, dV = \int_0^1 \int_0^{2-2x} \int_0^{2-2x-y} x \, dz \, dy \, dx$$

13.We denote by f(x, y) the function $f(x, y) = x^2 - xy + y^2$.

Thus we need to evaluate

$$\iint_R f(x,y) \, dA.$$

The ellipse $x^2 - xy + y^2 = 3$, which bounds the region R, when written in terms of u and v becomes

$$x^{2} - xy + y^{2} = (\sqrt{3}u - v)^{2} - (\sqrt{3}u - v)(\sqrt{3}u + v) + (\sqrt{3}u + v)^{2} = 3(u^{2} + v^{2}) = 3$$

which is the circle S of radius 1. Hence under the change of variables the region R in the (x, y)-plane is transformed to the unit disk D in the (u, v)-plane.

The function f(x, y) in terms of u and v is

$$f = x^2 - xy + y^2 = (\sqrt{3}u - v)^2 - (\sqrt{3}u - v)(\sqrt{3}u + v) + (\sqrt{3}u + v)^2 = 3(u^2 + v^2).$$

The Leephine is

The Jacobian is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \sqrt{3} & -1 \\ \sqrt{3} & 1 \end{vmatrix} = 2\sqrt{3}$$

So

$$\begin{aligned} \iint_{R} (x^{2} - xy + y^{2}) dx dy &= \iint_{D} 3(u^{2} + v^{2}) |2\sqrt{3}| du dv \\ &= 6\sqrt{3} \int_{0}^{2\pi} \int_{0}^{1} r^{2} r dr d\theta = 6\sqrt{3} \int_{0}^{2\pi} \frac{1}{4} d\theta = 3\sqrt{3}\pi \end{aligned}$$