Multiple Choice

1. (6 pts) If the scalar projection of \mathbf{b} onto \mathbf{a} is $\operatorname{Comp}_{\mathbf{a}} \mathbf{b}=1$, what is $\operatorname{Comp}_{2 \mathbf{a}} 3 \mathbf{b}$?
(a) 2
(b) 5
(c) $\frac{3}{2}$
(d) 6
(e) 3
2. (6 pts) Which of the following expressions gives the length of the curve defined by $\mathbf{r}(t)=\ln (t) \mathbf{i}-t \mathbf{j}+t^{2} \mathbf{k}$ between the points $(0,-1,1)$ and $\left(1,-e, e^{2}\right)$?
(a) $\int_{1}^{e} \sqrt{\ln ^{2}(t)+t^{2}+t^{4}} \mathrm{~d} t$
(b) $\int_{1}^{e^{2}} \sqrt{1 / t+1+4 t^{2}} \mathrm{~d} t$
(c) $\int_{1}^{e} \sqrt{1 / t^{2}+1+4 t^{2}} \mathrm{~d} t$
(d) $\int_{1}^{e} \sqrt{1 / t-1+2 t} \mathrm{~d} t$
(e) $\int_{1}^{e} \sqrt{\ln (t)-t+t^{2}} \mathrm{~d} t$
3. $(6 \mathrm{pts})$ Find the distance from the point $(1,2,3)$ to the plane $x+2 y-2 z=-7$.
(a) $\sqrt{3}$
(b) 1
(c) 6
(d) 2
(e) $\sqrt{6}$
4.(6 pts) Suppose the position function $\mathbf{r}(t)=\left\langle t^{3} / 3, t^{2} / 2, t\right\rangle$. Find the normal component of the acceleration vector at $t=1$.
(a) $a_{N}=\sqrt{2}$
(b) $a_{N}=\sqrt{3}$
(c) $a_{N}=\sqrt{5}$
(d) $a_{N}=1$
(e) $a_{N}=0$
4. (6 pts) Find the area of the triangle with vertices $(4,2,2),(3,3,1)$ and $(5,5,1)$.
(a) 0
(b) 4
(c) $\sqrt{3}$
(d) $\sqrt{6}$
(e) 2
5. (6 pts) For $f(x, y)=e^{x y^{2}}$, calculate the second partial derivative $f_{x y}$.
(a) $2 y^{3} e^{x y^{2}}+2 y e^{x y^{2}}$
(b) $2 x y^{3} e^{x y^{2}}+2 y e^{x y^{2}}$
(c) $4 x y^{2} e^{x y^{2}}$
(d) $4 x y e^{x y^{2}}$
(e) $2 x y e^{x y^{2}}+2 y e^{x y^{2}}$
6. $(6 \mathrm{pts})$ Find the vector equation of the line passing through the point $(1,1,1)$ and $(1,2,3)$
(a) $\langle x, y, z\rangle=\langle 1,1,1\rangle+t\langle 0,1,2\rangle$
(b) $\langle x, y, z\rangle=\langle 0,1,2\rangle+t\langle 1,2,3\rangle$
(c) $\langle x, y, z\rangle=\langle 1,1,1\rangle+t\langle 0,0,1\rangle$
(d) None of the above
(e) $\langle x, y, z\rangle=\langle 1,1,1\rangle+t\langle 1,2,3\rangle$
7. (6 pts) Consider a helix curve

$$
\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle .
$$

Find the equation of the osculating plane of the curve at the point $(0,0,0)$
(a) $x=0$
(b) $-y+z=0$
(c) None of the above
(d) $y+z=0$
(e) $x+y+z=0$
9. (6 pts) Given a space curve

$$
\mathbf{r}(t)=\left\langle 2 \cos t, e^{t}, t\right\rangle
$$

Which of the following points is in the tangent line of the curve at the point $(2,1,0)$?
(a) $(1,1,1)$
(b) $(2,1,1)$
(c) $(1,2,0)$
(d) $(2,2,1)$
(e) $(0,1,2)$
10. (6 pts) Which of the following functions has this contour map

(a) $\quad f(x, y)=x y$
(b) $f(x, y)=y-\frac{x y-1}{x}$
(c) $\quad f(x, y)=y-\frac{1}{x^{2}}$
(d) $\quad f(x, y)=\frac{1}{x}$
(e) $\quad f(x, y)=\frac{1}{x^{2}}$
11. (6 pts) Given three points $P(2,0,2), Q(1,1,0)$ and $R(1,2,3)$.
(a) Find an equation of the plane through P, Q and R.
(b) Find an equation of the line through the point $(1,1,1)$ perpendicular to the plane in part (a).
12.(6 pts) (a)Find an equation for the line of intersection of the planes $x-3 y+2 z=0$ and $2 x-3 y+z=0$.
(b) Does the line from part (a) intersect the line with equations $x=1+t, y=3-t$, $z=1+t$? If so, where do they intersect?
13. (6 pts) A particle has the acceleration

$$
\mathbf{a}(t)=2 \mathbf{j}+6 t \mathbf{k} .
$$

At the time $t=0$, the particle's position is at the origin and its velocity is $\mathbf{v}(0)=\mathbf{i}+\mathbf{k}$. Find the position function $\mathbf{r}(t)$ of the particle.

Name: \qquad
Instructor: ANSWERS

Math 20550, Practice Exam 1

February 19, 2019

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 6 pages of the test.
- Each multiple choice question is 6 points. Each partial credit problem is 12 points. You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	($)$
2. (a)	(b)	(-)	(d)	(e)
3. (a)	(b)	(c)	($)$	(e)
4. ()	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	($)$	(e)
6. (a)	(-)	(c)	(d)	(e)
7. ()	(b)	(c)	(d)	(e)
8. (a)	(-)	(c)	(d)	(e)
9. (a)	(b)	(c)	($)$	(e)
10. (a)	(b)	($)$	(d)	(e)

Please do NOT write in this box.	
Multiple Choice	_
11.	
12.	
13.	\square
Extra Points.	$\boxed{4}$
Total:	\square

11.

$$
\begin{gathered}
\mathbf{P Q}=(2,0,2)-(1,1,0)=\langle 1,-1,2\rangle \\
\mathbf{R Q}=(1,2,3)-(1,1,0)=\langle 0,1,3\rangle
\end{gathered}
$$

So for part (a) we compute $\mathbf{P Q} \times \mathbf{R Q}$ which is $\langle-3-2,-(3-0), 1\rangle=\langle-5,-3,1\rangle$. So the equation of the plane through P, Q, and R is

$$
\begin{gathered}
\langle-5,-3,1\rangle \cdot\langle x, y, z\rangle=\langle-5,-3,1\rangle \cdot\langle 1,1,0\rangle \\
-5 x-3 y+z=-8
\end{gathered}
$$

For part (b) we use the computations from part (a) to see that the equation of the line should be

$$
\langle x, y, z\rangle=\langle 1,1,1\rangle+t\langle-5,-3,1\rangle .
$$

12.For part (a) we take the cross product of the normal vectors of each plane.

$$
\langle 1,-3,2\rangle \times\langle 2,-3,1\rangle=\langle-3+6,-(1-4),-3+6\rangle=\langle 3,3,3\rangle .
$$

This is the direction of the line. So now we just need a point in the intersection of both planes, since both are of the form $a x+b y+c z=0$ we can easily see that $(0,0,0)$ is in the intersection. So the equation for the line of intersection is

$$
\langle x, y, z\rangle=t\langle 3,3,3\rangle .
$$

For part (b) to see if this line intersects the given line, we must solve a system of equations. Changing the paramter in the given line to s we get

$$
\begin{aligned}
& 1+s=3 t \\
& 3-s=3 t \\
& 1+s=3 t
\end{aligned}
$$

Solving the first equation for s to get $s=3 t-1$ and plugging into the 2 nd equation to get $3-(3 t-1)=3 t$ we can solve to see $t=2 / 3$. Which would mean that $s=1$. Checking these values in the equation we see that this is a solution $1+2=3(2 / 3)$. So using either the $t=2 / 3$ or $s=1$ value we can compute that the intersection point is $(2,2,2)$.
13. To find $\mathbf{v}(t)$ we integrate $\mathbf{a}(t)$, to get

$$
\mathbf{v}(t)=\left\langle c, 2 t+d, 3 t^{2}+e\right\rangle
$$

where c, d, and e are constants.
To find the constants we evaluate at 0 . To see that $\mathbf{v}(0)=\langle c, d, e\rangle$ which should equal $\langle 1,0,1\rangle$. So $c=1, d=0$, and $e=1$.

So now $\mathbf{v}(t)=\left\langle 1,2 t, 3 t^{2}+1\right\rangle$.
To find $\mathbf{r}(t)$ we repeat this process,

$$
\mathbf{r}(t)=\left\langle t+c, t^{2}+d, t^{3}+t+e\right\rangle .
$$

Now using the intial data we have that

$$
\langle 0,0,0\rangle=\mathbf{r}(0)=\langle c, d, e\rangle .
$$

So $c=0, d=0$, and $e=0$.
So the final answer is $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}+t\right\rangle$.

