Multiple Choice

1.(6 pts) Find the volume of the solid that lies under $z = x^3 + y^3$ and above the region in the xy-plane bounded by $y = x^2$ and $x = y^2$.

- (a) $\frac{3}{16}$ (b) $\frac{1}{9}$ (c) $\frac{1}{16}$ (d) $\frac{1}{18}$ (e) $\frac{5}{18}$

2.(6 pts) Let E be the part of the ball $x^2 + y^2 + z^2 \le 9$ that lies in the first octant. Determine which integral computes the mass of E if the density is $\delta(x, y, z) = x^2 + y^2$.

- $\int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \rho^4 \sin^3 \phi \, d\rho \, d\phi \, d\theta \qquad (b) \qquad \int_0^{\pi/2} \int_0^{\pi/4} \int_0^3 \rho^3 \sin^2 \phi \cos \phi \, d\rho \, d\phi \, d\theta$
- (c) $\int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \rho^2 \cos \phi \, d\rho \, d\phi \, d\theta$ (d) $\int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \rho^3 \sin^2 \phi \, d\rho \, d\phi \, d\theta$
- (e) $\int_0^{\pi/2} \int_0^{\pi/4} \int_0^3 \rho^4 \sin \phi \cos \phi \, d\rho \, d\phi \, d\theta$

3.(6 pts) Which of the following computes $\iiint_E y \, dV$, where E is the solid that lies between cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ above the xy-plane and below the plane z = x + 4?

- (a) $\int_0^{2\pi} \int_1^2 \int_0^{r\cos\phi + 4} r^2 \sin\phi \, dz dr d\phi$ (b) $\int_0^{2\pi} \int_1^2 \int_0^r r \sin\phi \, dz dr d\phi$
- (c) $\int_0^{2\pi} \int_1^2 \int_0^{r \cos \phi + 4} r \sin \phi \, dz dr d\phi$ (d) $\int_0^{2\pi} \int_1^2 \int_0^r r^2 \sin \phi \, dz dr d\phi$
- (e) $\int_0^{2\pi} \int_1^2 \int_0^{r \sin \phi} (r \cos \phi + 4) \, dz dr d\phi$

4.(6 pts) Evaluate $\int_C 4 \, ds$, where C is the helix $x = 2 \sin t$, $y = 2 \cos t$, z = 3t, $0 \le t \le 2\pi$.

- (a) $4\sqrt{13}\pi$
- (b) $8\sqrt{13}$ (c) $8\sqrt{13}\pi^2$ (d) $\sqrt{13}$ (e) $8\sqrt{13}\pi$

5.(6 pts)Use Fundamental Theorem of line integrals to evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$, where

$$\mathbf{F}(x,y) = 2x\mathbf{i} + 2y\mathbf{j}$$

and C is given by $\mathbf{r}(t) = \langle t^2 \cos(\pi t), 2^{t-1} \sqrt{t} \rangle$, $1 \le t \le 2$.

- 3 (a)
- (b) 18
- (c) 24
- (d) 22
- (e) 0

6.(6 pts) Find the curl of the vector field

$$\mathbf{F}(x, y, z) = xz^2 \mathbf{i} + \cos(yz)\mathbf{j} + (x + yz)\mathbf{k}.$$

- (a) $\frac{1}{2}z^2(x^2+y^2) + xz + \frac{1}{z}\sin(yz)$ (b) $(z+y\sin(yz))\mathbf{i} + (2xz-1)\mathbf{j}$

(c) $y + z^2$

- (e) $(y + z\sin(yz))\mathbf{i} + (z^2 y)\mathbf{j} + (-z\sin(yz) z^2)\mathbf{k}$

7.(6 pts) Which of the following could be the vector field depicted below?

- (a) $\mathbf{F} = x\mathbf{i} + \mathbf{j}$
- (b) $\mathbf{F} = x\mathbf{i} y\mathbf{j}$
 - (c) $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j}$

- (d) $\mathbf{F} = y\mathbf{i} x\mathbf{j}$
- (e) $\mathbf{F} = -x^2 \mathbf{i} y^2 \mathbf{j}$

8.(6 pts) Compute the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$ of the map $x=5v\sin u,\ y=4v\cos u.$

(a) 9v

- $-20v\sin u\cos u$
- (c) 20v

 $9v^2$ (d)

(e)

9.(6 pts) Evaluate the line integral $\int_C xy \, dx$, where C is the part of $y = x^2$ form (0,0)to (2,4).

- (a) 4
- (b) -4 (c) 0 (d) 2 (e) -2

10.(6 pts) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y) = xy\mathbf{i} + e^{x^3}\mathbf{j}$ and C is the line segment from (2,0) to (4,0).

- (a) -2 (b) 2 (c) 4 (d) -4 (e) 0

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.) Let $\mathbf{F} = (x + yz)\mathbf{i} + xz\mathbf{j} + (z + xy)\mathbf{k}$ be a vector field.

- (a) Find a function f(x, y, z) such that $\mathbf{F} = \nabla f$.
- (b) Compute $\int_C \mathbf{F} \cdot d\mathbf{t}$, where C is the curve $\mathbf{r}(t) = \langle t, e^t, te^{t^3} \rangle$, $0 \le t \le 1$.

12.(12 pts.) Use the transformation x = u + v, y = v to compute $\iint_D 2 dA$ where D is the region bounded by $x^2 - 2xy + 2y^2 = 1$.

13.(12 pts.) Use Green's Theorem to compute $\int_C (e^x - y) dx + (5x + \cos y) dy$, where C is the curve $x^2 - 2xy + 2y^2 = 1$ with positive orientation.

Name:		
Instructor	ANSWERS	

Math 20550, Practice Exam 3 April 25, 2017

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 4 pages of the test.
- Each multiple choice question is 6 points. Each partial credit problem is 12 points. You will receive 4 extra points.

PLE	ASE MARI	X YOUR AN	SWERS WIT	H AN X, not a	a circle!
1.	(a)	(ullet)	(c)	(d)	(e)
2.	(ullet)	(b)	(c)	(d)	(e)
3.	(ullet)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(●)
5.	(a)	(b)	(c)	(ullet)	(e)
6.	(a)	(ullet)	(c)	(d)	(e)
7.	(a)	(ullet)	(c)	(d)	(e)
8.	(a)	(b)	(ullet)	(d)	(e)
9.	(ullet)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(ullet)

Please do NOT	write in this b	ox.
Multiple Choice		
11.		
12.		
13.		-
Extra Points.	4	
Total:		

11.(a) We need to find a function f(x, y, z) with

(1)
$$f_x = x + yz$$
; (2) $f_y = xz$; (3) $f_z = (z + xy)$.

First let's assume $f_x = x + yz$, then

(I)
$$f = \int (x + yz) dx = \frac{1}{2}x^2 + xyz + h(y, z),$$

where h(y, z) does not contain x.

To satisfy (2) we need to have $f_y = xz$. Differentiating the above function with respect to y we find that $xz + h_y(y, z)$ must be equal to xz, so $xz + h_y(y, z) = xz$ and $h_y(y, z) = 0$. Solving $h_y(y, z) = 0$ we obtain that h(y, z) = g(z), where g(z) does not contain neither x nor y. Replacing h(y, z) by g(z) in (I) we obtain that our candidate for f has form

(II)
$$f = \frac{1}{2}x^2 + xyz + g(z)$$
.

To satisfy (3) the partial derivative of f with respect to z must be equal to z + xy. Differentiating our candidate with respect to z we obtain an equation

$$z + xy = xy + g_z(z)$$

or

$$g_z(z) = z$$

Integrating with respect to z we get $g(z) = \frac{1}{2}z^2 + C$, where C is any constant. For simplicity we choose C = 0, and from (II) we get an answer.

$$f = \frac{1}{2}x^2 + xyz + \frac{1}{2}z^2.$$

(b) By the Fundamental Theorem of Line Integrals

$$\int_C \mathbf{F} \cdot d\mathbf{t} = f(\mathbf{r}(1)) - f(\mathbf{r}(0)) = f(1, e, e) - f(0, 1, 0) = \frac{1}{2} + e^2 + \frac{1}{2}e^2 - 0 = \frac{1}{2} + \frac{3}{2}e^2.$$

12. First we compute the Jacobian

$$\frac{\partial(x,y)}{\partial(u,v)} = \left| \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right| = 1$$

Then we see that our region D bounded by $x^2 - 2xy + 2y^2 = 1$ corresponds to the region S bounded by $u^2 + v^2 = 1$ under this transformation.

So our integral becomes

$$\iint_D 2dA = \iint_S 2 \cdot 1 \, dA = 2\pi$$

13.Let D be the region bounded by the curve C. By Green's theorem we have

$$\int_C (e^x - y) dx + (5x + \cos y) dy = \iint_D (5 - (-1)) dA = 6 \iint_D dA.$$

Completing squares we rewrite C as

$$(x - y)^2 + y^2 = 1.$$

We use substitution x - y = u, y = v, or x = u + v, v = 1.

Under this substitution the curve C corresponds to the circle $u^2 + v^2 = 1$, and the region D corresponds to the unit disk S.

The Jacobian is

$$\frac{\partial(x,y)}{\partial(u,v)} = \left| \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right| = 1,$$

and our integral becomes

$$6\iint_S dA = 6$$
 times the area of $S = 6\pi$.