Multiple Choice

1. (6 pts) Find the volume of the solid that lies under $z=x^{3}+y^{3}$ and above the region in the $x y$-plane bounded by $y=x^{2}$ and $x=y^{2}$.
(a) $\frac{3}{16}$
(b) $\frac{1}{9}$
(c) $\frac{1}{16}$
(d) $\frac{1}{18}$
(e) $\frac{5}{18}$
2. $(6 \mathrm{pts})$ Let E be the part of the ball $x^{2}+y^{2}+z^{2} \leq 9$ that lies in the first octant. Determine which integral computes the mass of E if the density is $\delta(x, y, z)=x^{2}+y^{2}$.
(a) $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{3} \rho^{4} \sin ^{3} \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta$
(b) $\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{3} \rho^{3} \sin ^{2} \phi \cos \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta$
(c) $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{3} \rho^{2} \cos \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta$
(d) $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{3} \rho^{3} \sin ^{2} \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta$
(e) $\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{3} \rho^{4} \sin \phi \cos \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta$
3. (6 pts) Which of the following computes $\iiint_{E} y \mathrm{~d} V$, where E is the solid that lies between cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ above the $x y$-plane and below the plane $z=x+4$?
(a) $\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r \cos \phi+4} r^{2} \sin \phi \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \phi$
(b) $\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r} r \sin \phi \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \phi$
(c) $\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r \cos \phi+4} r \sin \phi \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \phi$
(d) $\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r} r^{2} \sin \phi \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \phi$
(e) $\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r \sin \phi}(r \cos \phi+4) \mathrm{d} z \mathrm{~d} r \mathrm{~d} \phi$
4. $(6 \mathrm{pts})$ Evaluate $\int_{C} 4 \mathrm{~d} s$, where C is the helix $x=2 \sin t, y=2 \cos t, z=3 t, 0 \leq t \leq 2 \pi$.
(a) $4 \sqrt{13} \pi$
(b) $8 \sqrt{13}$
(c) $8 \sqrt{13} \pi^{2}$
(d) $\sqrt{13}$
(e) $8 \sqrt{13} \pi$
5. (6 pts) Use Fundamental Theorem of line integrals to evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where

$$
\mathbf{F}(x, y)=2 x \mathbf{i}+2 y \mathbf{j}
$$

and C is given by $\mathbf{r}(t)=\left\langle t^{2} \cos (\pi t), 2^{t-1} \sqrt{t}\right\rangle, 1 \leq t \leq 2$.
(a) 3
(b) 18
(c) 24
(d) 22
(e) 0
6. (6 pts) Find the curl of the vector field

$$
\mathbf{F}(x, y, z)=x z^{2} \mathbf{i}+\cos (y z) \mathbf{j}+(x+y z) \mathbf{k} .
$$

(a) $\frac{1}{2} z^{2}\left(x^{2}+y^{2}\right)+x z+\frac{1}{z} \sin (y z)$
(b) $(z+y \sin (y z)) \mathbf{i}+(2 x z-1) \mathbf{j}$
(c) $y+z^{2}$
(d) $z^{2} \mathbf{i}+y \mathbf{k}$
(e) $\quad(y+z \sin (y z)) \mathbf{i}+\left(z^{2}-y\right) \mathbf{j}+\left(-z \sin (y z)-z^{2}\right) \mathbf{k}$
7. (6 pts) Which of the following could be the vector field depicted below?

(a) $\mathbf{F}=x \mathbf{i}+\mathbf{j}$
(b) $\quad \mathbf{F}=x \mathbf{i}-y \mathbf{j}$
(c) $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}$
(d) $\mathbf{F}=y \mathbf{i}-x \mathbf{j}$
(e) $\quad \mathbf{F}=-x^{2} \mathbf{i}-y^{2} \mathbf{j}$
8. $(6 \mathrm{pts})$ Compute the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ of the map $x=5 v \sin u, y=4 v \cos u$.
(a) $9 v$
(b) $-20 v \sin u \cos u$
(c) $20 v$
(d) $9 v^{2}$
(e) v
9. $(6 \mathrm{pts})$ Evaluate the line integral $\int_{C} x y \mathrm{~d} x$, where C is the part of $y=x^{2}$ form $(0,0)$ to $(2,4)$.
(a) 4
(b) -4
(c) 0
(d) 2
(e) -2
10.(6 pts) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=x y \mathbf{i}+e^{x^{3}} \mathbf{j}$ and C is the line segment from $(2,0)$ to $(4,0)$.
(a) -2
(b) 2
(c) 4
(d) -4
(e) 0

Partial Credit

You must show your work on the partial credit problems to receive credit!
11.(12 pts.) Let $\mathbf{F}=(x+y z) \mathbf{i}+x z \mathbf{j}+(z+x y) \mathbf{k}$ be a vector field.
(a) Find a function $f(x, y, z)$ such that $\mathbf{F}=\nabla f$.
(b) Compute $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{t}$, where C is the curve $\mathbf{r}(t)=\left\langle t, e^{t}, t e^{t^{3}}\right\rangle, 0 \leq t \leq 1$.
12.(12 pts.) Use the transformation $x=u+v, y=v$ to compute $\iint_{D} 2 \mathrm{~d} A$ where D is the region bounded by $x^{2}-2 x y+2 y^{2}=1$.
13.(12 pts.) Use Green's Theorem to compute $\int_{C}\left(e^{x}-y\right) \mathrm{d} x+(5 x+\cos y) \mathrm{d} y$, where C is the curve $x^{2}-2 x y+2 y^{2}=1$ with positive orientation.

Name: \qquad
Instructor: ANSWERS
Math 20550, Practice Exam 3 April 25, 2017

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 4 pages of the test.
- Each multiple choice question is 6 points. Each partial credit problem is 12 points.

You will receive 4 extra points.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	($)$	(c)	(d)	(e)
2. ($)^{\prime}$	(b)	(c)	(d)	(e)
3. ($)^{\text {(}}$	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(${ }^{\text {) }}$
5. (a)	(b)	(c)	($)$	(e)
6. (a)	($)$	(c)	(d)	(e)
7. (a)	($)^{\text {(}}$	(c)	(d)	(e)
8. (a)	(b)	($)^{\text {(}}$	(d)	(e)
9. ($)^{\text {) }}$	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(•)

Please do NOT write in this box.	
Multiple Choice	$\boxed{ }$
11.	$\boxed{ }$
12.	\square
13.	$\boxed{ }$
Extra Points.	$\boxed{4}$
Total:	\square

11.(a) We need to find a function $f(x, y, z)$ with
(1) $f_{x}=x+y z ;$
(2) $f_{y}=x z$;
(3) $f_{z}=(z+x y)$.

First let's assume $f_{x}=x+y z$, then

$$
\text { (I) } \quad f=\int(x+y z) d x=\frac{1}{2} x^{2}+x y z+h(y, z)
$$

where $h(y, z)$ does not contain x.
To satisfy (2) we need to have $f_{y}=x z$. Differentiating the above function with respect to y we find that $x z+h_{y}(y, z)$ must be equal to $x z$, so $x z+h_{y}(y, z)=x z$ and $h_{y}(y, z)=0$. Solving $h_{y}(y, z)=0$ we obtain that $h(y, z)=g(z)$, where $g(z)$ does not contain neither x nor y. Replacing $h(y, z)$ by $g(z)$ in (I) we obtain that our candidate for f has form

$$
\text { (II) } \quad f=\frac{1}{2} x^{2}+x y z+g(z) .
$$

To satisfy (3) the partial derivative of f with respect to z must be equal to $z+x y$. Differentiating our candidate with respect to z we obtain an equation

$$
z+x y=x y+g_{z}(z)
$$

or

$$
g_{z}(z)=z
$$

Integrating with respect to z we get $g(z)=\frac{1}{2} z^{2}+C$, where C is any constant. For simplicity we choose $C=0$, and from (II) we get an answer.

$$
f=\frac{1}{2} x^{2}+x y z+\frac{1}{2} z^{2} .
$$

(b) By the Fundamental Theorem of Line Integrals

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{t}=f(\mathbf{r}(1))-f(\mathbf{r}(0))=f(1, e, e)-f(0,1,0)=\frac{1}{2}+e^{2}+\frac{1}{2} e^{2}-0=\frac{1}{2}+\frac{3}{2} e^{2} .
$$

12.First we compute the Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1
$$

Then we see that our region D bounded by $x^{2}-2 x y+2 y^{2}=1$ corresponds to the region S bounded by $u^{2}+v^{2}=1$ under this transformation.

So our integral becomes

$$
\iint_{D} 2 d A=\iint_{S} 2 \cdot 1 d A=2 \pi
$$

13.Let D be the region bounded by the curve C. By Green's theorem we have

$$
\int_{C}\left(e^{x}-y\right) \mathrm{d} x+(5 x+\cos y) \mathrm{d} y=\iint_{D}\left(5-(-1) d A=6 \iint_{D} d A .\right.
$$

Completing squares we rewrite C as

$$
(x-y)^{2}+y^{2}=1
$$

We use substitution $x-y=u, y=v$, or $x=u+v, v=1$.
Under this substitution the curve C corresponds to the circle $u^{2}+v^{2}=1$, and the region D corresponds to the unit disk S.

The Jacobian is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1
$$

and our integral becomes

$$
6 \iint_{S} d A=6 \text { times the area of } S=6 \pi .
$$

