M20550 Calculus III Tutorial Worksheet 5

1. Find $\frac{d z}{d t}$ when $t=2$, where $z=x^{2}+y^{2}-2 x y, x=\ln (t-1)$ and $y=e^{-t}$.
2. Let $r=r(x, y), x=x(s, t)$, and $y=y(t)$. Given that

$$
\begin{array}{lll}
x(1,0)=2, & x_{s}(1,0)=-1, & x_{t}(1,0)=7 \\
y(0)=3, & y(1)=0 & y^{\prime}(0)=4 \\
r(2,3)=-1, & r_{x}(2,3)=3, & r_{y}(2,3)=5 \\
r_{x}(1,0)=6, & r_{y}(1,0)=-2, &
\end{array}
$$

calculate $\frac{\partial r}{\partial t}$ at $s=1, t=0$.
3. (a) Let $f(x, y, z)=x^{2}-y z$. If $\mathbf{v}=\langle 1,1,0\rangle$, find the directional derivative of f in the direction of \mathbf{v} at the point $(1,2,3)$.
(b) Interpret your result in part (a) by filling in the blanks and circling the correct word of the statement below:

At the point \qquad , the value of the function f is increasing / decreasing at the rate of \qquad as we move in the direction given by the vector \qquad .
4. Let $f(x, y)=\ln (x y)$. Find the maximum rate of change of f at $(1,2)$ and the direction in which it occurs.
5. Identify the absolute maximum and absolute minimum values attained by $g(x, y)=$ $x^{2} y-2 x^{2}$ within the triangle T bounded by the points $P(0,0), Q(2,0)$, and $R(0,4)$.
6. Identify the absolute maximum and absolute minimum values attained by $z=4 x^{2}-y^{2}+1$ on the region $R=\left\{(x, y) \mid 4 x^{2}+y^{2} \leq 16\right\}$.
7. Find all points on the surface $z=x^{2}-y^{3}$ where the tangent plane is parallel to the plane $x+3 y+z=0$.

More Practice Problems:
8. (This usually is a challenging problem to students) Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is $\mathbf{i}+\mathbf{j}$.
9. If $h=x^{2}+y^{2}+z^{2}$ and f is a differentiable function of two variables that satisfies the equation

$$
y \cos f(x, y)+f(x, y) \cos x=0
$$

at every point (x, y) in its domain, find

$$
\frac{\partial(h(x, y, f(x, y)))}{\partial x}
$$

10. A cylinder containing an incompressible fluid is being squeezed from both ends. If the length of the cylinder is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$, calculate the rate at which the radius is changing when the radius is 2 m and the length is 1 m . (Note: An incompressible fluid is a fluid whose volume does not change.)
