M20550 Calculus III Tutorial Worksheet 5

1. Find $\frac{d z}{d t}$ when $t=2$, where $z=x^{2}+y^{2}-2 x y, x=\ln (t-1)$ and $y=e^{-t}$.

Solution: We have $z=z(x(t), y(t))$. So, by the chain rule, we obtain

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =(2 x-2 y)\left(\frac{1}{t-1}\right)+(2 y-2 x) e^{-t}(-1) \\
& =\left(2 \ln (t-1)-2 e^{-t}\right)\left(\frac{1}{t-1}\right)-\left(2 e^{-t}-2 \ln (t-1)\right) e^{-t}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left.\frac{d z}{d t}\right|_{t=2} & =\left(2 \ln (2-1)-2 e^{-2}\right)\left(\frac{1}{2-1}\right)-\left(2 e^{-2}-2 \ln (2-1)\right) e^{-2} \\
& =\left(0-2 e^{-2}\right) \cdot 1-\left(2 e^{-2}-0\right) e^{-2} \\
& =-2 e^{-2}-2 e^{-4}
\end{aligned}
$$

2. Let $r=r(x, y), x=x(s, t)$, and $y=y(t)$. Given that

$$
\begin{array}{lll}
x(1,0)=2, & x_{s}(1,0)=-1, & x_{t}(1,0)=7 \\
y(0)=3, & y(1)=0 & y^{\prime}(0)=4 \\
r(2,3)=-1, & r_{x}(2,3)=3, & r_{y}(2,3)=5 \\
r_{x}(1,0)=6, & r_{y}(1,0)=-2, &
\end{array}
$$

calculate $\frac{\partial r}{\partial t}$ at $s=1, t=0$.

Solution: We have $r=(x(s, t), y(t))$. So, from the chain rule, we get

$$
\begin{aligned}
\frac{\partial r}{\partial t} & =\frac{\partial r}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial r}{\partial y} \frac{d y}{d t} \\
& =r_{x} x_{t}+r_{y} y^{\prime} \\
& =r_{x}(x, y) x_{t}(s, t)+r_{y}(x, y) y^{\prime}(t)
\end{aligned}
$$

When $s=1$ and $t=0$, we have $x=x(1,0)=2$ and $y=y(0)=3$. So,

$$
\begin{aligned}
\left.\frac{\partial r}{\partial t}\right|_{s=1, t=0} & =r_{x}(2,3) x_{t}(1,0)+r_{y}(2,3) y^{\prime}(0) \\
& =(3)(7)+(5)(4) \\
& =41
\end{aligned}
$$

3. (a) Let $f(x, y, z)=x^{2}-y z$. If $\mathbf{v}=\langle 1,1,0\rangle$, find the directional derivative of f in the direction of \mathbf{v} at the point $(1,2,3)$.
(b) Interpret your result in part (a) by filling in the blanks and circling the correct word of the statement below:

At the point \qquad , the value of the function f is increasing / decreasing at the rate of \qquad as we move in the direction given by the vector \qquad .

Solution: (a) The directional derivative of f in the direction of \mathbf{v} at the point $(1,2,3)$, denote $D_{\mathbf{u}} f(1,2,3)$ where $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}$, is given by

$$
D_{\mathbf{u}} f(1,2,3)=\nabla f(1,2,3) \cdot \mathbf{u}
$$

First,

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\langle 1,1,0\rangle}{\sqrt{1^{2}+1^{2}+0^{2}}}=\frac{1}{\sqrt{2}}\langle 1,1,0\rangle .
$$

Secondly, the gradient of f is given by:

$$
\begin{aligned}
\nabla f & =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \\
& =\langle 2 x,-z,-y\rangle \\
\Longrightarrow \nabla f(1,2,3) & =\langle 2,-3,-2\rangle .
\end{aligned}
$$

So, now

$$
\begin{aligned}
D_{\mathbf{u}} f(1,2,3) & =\nabla f(1,2,3) \cdot \mathbf{u} \\
& =\langle 2,-3,-2\rangle \cdot \frac{1}{\sqrt{2}}\langle 1,1,0\rangle \\
& =\frac{1}{\sqrt{2}}\langle 2,-3,-2\rangle \cdot\langle 1,1,0\rangle \\
& =\frac{1}{\sqrt{2}}(2-3) \\
& =-\frac{1}{\sqrt{2}}
\end{aligned}
$$

(b) At the point $(1,2,3)$, the value of the function f is decreasing at the rate of $\underline{1 / \sqrt{2}}$ as we move in the direction given by the vector $\langle 1,1,0\rangle$.
4. Let $f(x, y)=\ln (x y)$. Find the maximum rate of change of f at $(1,2)$ and the direction in which it occurs.

Solution: It is a fact that f changes the fastest in the direction of its gradient vector and the maximum rate of change is the magnitude of the gradient vector.
With $f(x, y)=\ln (x y)$, we first compute $\nabla f(1,2)$:

$$
\begin{aligned}
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle=\left\langle\frac{y}{x y}, \frac{x}{x y}\right\rangle & =\left\langle\frac{1}{x}, \frac{1}{y}\right\rangle \\
\Longrightarrow \nabla f(1,2) & =\left\langle 1, \frac{1}{2}\right\rangle . \\
\Longrightarrow|\nabla f(1,2)|=\left|\left\langle 1, \frac{1}{2}\right\rangle\right|=\sqrt{1^{2}+\left(\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}} & =\frac{\sqrt{5}}{2} .
\end{aligned}
$$

So, the maximum rate of change of f at $(1,2)$ is $\frac{\sqrt{5}}{2}$ and the direction in which it occurs is $\left\langle 1, \frac{1}{2}\right\rangle$.
5. Identify the absolute maximum and absolute minimum values attained by $g(x, y)=$ $x^{2} y-2 x^{2}$ within the triangle T bounded by the points $P(0,0), Q(2,0)$, and $R(0,4)$.

Solution: The picture for the triangle T :

First, we find all critical points in the interior of the triangle:

$$
\left\{\begin{array}{l}
g_{x}(x, y)=2 x y-4 x=0 \tag{1}\\
g_{y}(x, y)=x^{2}=0
\end{array}\right.
$$

Equation (2) tells us that x must be zero. And when $x=0$, equation (1) is true automatically giving us the points $(0, y)$ for $0 \leq y \leq 4$ are the solutions of this system of equations. So, all the critical points are exactly the boundary $P R$ of the triangle. So, we get no critical point inside the triangle. We move on to analyze the boundaries.

On the boundary $P R$, we have $x=0$ and $0 \leq y \leq 4$. And, $g(0, y)=0$.
On the boundary $P Q$, we have $0 \leq x \leq 2$ and $y=0$. And, $g(x, 0)=-2 x^{2}$. The graph of $-2 x^{2}$ is a parabola concaves downward. So, $g(x, 0)=-2 x^{2}$ with $0 \leq x \leq 2$ attains a maximum value of 0 when $x=0$ and a minimum value of -8 when $x=2$.
On the boundary $Q R$, we have $y=-2 x+4$ with $0 \leq x \leq 2$. And, $g(x,-2 x+4)=$ $x^{2}(-2 x+4)-2 x^{2}=-2 x^{3}+2 x^{2}$, for $0 \leq x \leq 2$. The critical numbers of $-2 x^{3}+2 x^{2}$ for $0 \leq x \leq 2$ are $x=0$ and $x=\frac{2}{3}$. So, g has a minimum of 0 at $x=0$ and a maximum of $\frac{8}{27}$ at $x=\frac{2}{3}, y=\frac{8}{3}$ on this boundary.
Here is a summary of the results:

(x, y)	$g(x, y)$
$(0, y)$	0
$(2,0)$	-8
$\left(\frac{2}{3}, \frac{8}{3}\right)$	$\frac{8}{27}$

So, we conclude that on the whole triangle (including boundaries), the function has an absolute maximum of $\frac{8}{27}$ at $\left(\frac{2}{3}, \frac{8}{3}\right)$ and an absolute minimum of -8 at $(2,0)$.
6. Identify the absolute maximum and absolute minimum values attained by $z=4 x^{2}-y^{2}+1$ on the region $R=\left\{(x, y) \mid 4 x^{2}+y^{2} \leq 16\right\}$.

Solution: First, we find the critical points in the interior of the region R. We have

$$
\begin{cases}z_{x}(x, y)=8 x=0 & \Longrightarrow x=0 \\ z_{y}(x, y)=-2 y=0 & \Longrightarrow y=0\end{cases}
$$

So, the only critical point inside R is $(0,0)$.
Next, we want to find the extreme values of z on the boundary $4 x^{2}+y^{2}=16$. One way of doing this is to use the method of Lagrange Multipliers. In this language, we want to find the extrema of $z=4 x^{2}-y^{2}+1$ subject to the constraint $g(x, y)=$ $4 x^{2}+y^{2}=16$. We have $\nabla z=\lambda \nabla g$ for some constant λ. So, we get the system of equations:

$$
\left\{\begin{array}{l}
8 x=\lambda 8 x \tag{1}\\
-2 y=\lambda 2 y \\
4 x^{2}+y^{2}=16
\end{array}\right.
$$

Equation $(1) \Leftrightarrow 8 x(1-\lambda)=0 \Longrightarrow x=0$ or $\lambda=1$.

- If $x=0$, then from equation (3) we get $y= \pm 4$. And so we get $(0, \pm 4)$ as the points of interest.
- If $\lambda=1$, then from equation (2) we get $y=0$. With $y=0$, equation (3) gives $x= \pm 2$. So, the points of interest are $(\pm 2,0)$.

Finally, let's compute the values of z at all the points we found:

(x, y)	$z=4 x^{2}-y^{2}+1$
$(0,0)$	1
$(0,-4)$	-15
$(0,4)$	-15
$(-2,0)$	17
$(2,0)$	17

In conclusion, the absolute maximum value of z is 17 and it occurs at the points $(-2,0)$ and $(2,0)$. The absolute minimum value of z is -15 and it occurs at the points $(0,-4)$ and $(0,4)$.
7. Find all points on the surface $z=x^{2}-y^{3}$ where the tangent plane is parallel to the plane $x+3 y+z=0$.

Solution: First, rewrite $z=x^{2}-y^{3}$ into the level surface $F(x, y, z)=x^{2}-y^{3}-z=0$ then $\nabla F(x, y, z)=\left\langle 2 x,-3 y^{2},-1\right\rangle$ gives a normal vector to the tangent plane at any point (x, y, z) on the surface.

We want to find a point (x, y, z) such that the tangent plane is parallel to the plane $x+3 y+z=0$; so we want to find x, y, z such that $\nabla F(x, y, z)=k\langle 1,3,1\rangle$, for some scalar k. We have $\left\langle 2 x,-3 y^{2},-1\right\rangle=k\langle 1,3,1\rangle$ implies

$$
\begin{cases}2 x & =k \\ -3 y^{2} & =3 k \\ -1 & =k\end{cases}
$$

So, $k=-1$ (no other k works for this system of equations). Thus, we get $2 x=-1 \Longrightarrow x=-\frac{1}{2}$, and $-3 y^{2}=-3 \Longrightarrow y= \pm 1$. Now we need to find z. Remember the point (x, y, z) we are looking for is on the surface $z=x^{2}-y^{3}$.

So then with $x=-\frac{1}{2}$ and $y=1$, we get $z=\left(-\frac{1}{2}\right)^{2}-(1)^{3}=-\frac{3}{4}$.
And with $x=-\frac{1}{2}$ and $y=-1$, we get $z=\left(-\frac{1}{2}\right)^{2}-(-1)^{3}=\frac{5}{4}$.
So, at the points $\left(-\frac{1}{2}, 1,-\frac{3}{4}\right)$ and $\left(-\frac{1}{2},-1, \frac{5}{4}\right)$, the tangent plane to the surface $z=x^{2}-y^{3}$ is is parallel to the plane $x+3 y+z=0$.

More Practice Problems:

8. (This usually is a challenging problem to students) Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is $\mathbf{i}+\mathbf{j}$.

Solution: We know the direction of fastest change of f at a point (x, y) is given by the direction of $\nabla f(x, y)=\langle 2 x-2,2 y-4\rangle$. So, we want to find all pairs (x, y) such that $\langle 2 x-2,2 y-4\rangle=k\langle 1,1\rangle$ for any constant k. We obtain the system of equations

$$
\left\{\begin{array}{l}
2 x-2=k \\
2 y-4=k
\end{array}\right.
$$

Then, $2 x-2=2 y-4 \Longrightarrow y=x+1$. Thus, all the wanted pairs (x, y) are $(x, x+1)$, where x admits any value in the domain. This is exactly all the points on the line $y=x+1$ in the domain of f.
9. If $h=x^{2}+y^{2}+z^{2}$ and f is a differentiable function of two variables that satisfies the equation

$$
y \cos f(x, y)+f(x, y) \cos x=0
$$

at every point (x, y) in its domain, find

$$
\frac{\partial(h(x, y, f(x, y)))}{\partial x}
$$

Solution: So,

$$
\frac{\partial h(x, y, f(x, y))}{\partial x}=\frac{\partial\left[x^{2}+y^{2}+f(x, y)^{2}\right]}{\partial x}=2 x+2 f(x, y) \frac{\partial f(x, y)}{\partial x}
$$

For the following calculation, we let z stand for $f(x, y)$, just to make the notation easier to handle. To find $\frac{\partial f(x, y)}{\partial x}$, we use implicit differentiation:

$$
\begin{aligned}
y \cos z+z \cos x & =0 \\
\frac{\partial}{\partial x}[y \cos z+z \cos x] & =\frac{\partial}{\partial x}[0] \\
-y \sin z \frac{\partial z}{\partial x}+\frac{\partial z}{\partial x} \cos x-z \sin x & =0 \\
\frac{\partial z}{\partial x}(\cos x-y \sin z) & =z \sin x \\
\frac{\partial z}{\partial x} & =\frac{z \sin x}{\cos x-y \sin z}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\frac{\partial h(x, y, f(x, y))}{\partial x}=2 x+2 f(x, y)\left(\frac{f(x, y) \sin x}{\cos x-y \sin (f(x, y))}\right) \\
\quad \Longrightarrow \frac{\partial h(x, y, f(x, y))}{\partial x}=2 x+\frac{2 f(x, y)^{2} \sin x}{\cos x-y \sin f(x, y)}
\end{gathered}
$$

10. A cylinder containing an incompressible fluid is being squeezed from both ends. If the length of the cylinder is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$, calculate the rate at which the radius is changing when the radius is 2 m and the length is 1 m . (Note: An incompressible fluid is a fluid whose volume does not change.)

Solution: Let V be the volume of the cylinder, r be the radius of the cylinder, and l be its length. Then, $V=\pi r^{2} l$. So, $V=V(r(t), l(t))$.
By assumptions, we have $\frac{d l}{d t}=-3$ and incompressibility of the fluid implies $\frac{d V}{d t}=0$.
We want to find $\frac{d r}{d t}$ at the instant when $r=2$ and $l=1$. We have

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d}{d t}\left[\pi r^{2} l\right] \\
0 & =2 \pi r l \frac{d r}{d t}+\pi r^{2} \frac{d l}{d t} . \quad \text { And we know } \frac{d l}{d t}=-3 ; \text { so } \\
0 & =2 \pi r l \frac{d r}{d t}-3 \pi r^{2} \\
\frac{d r}{d t} & =\frac{3 r}{2 l} .
\end{aligned}
$$

Hence, when $r=2, l=1$, we get $\frac{d r}{d t}=\frac{3 \cdot 2}{2 \cdot 1}=3 \mathrm{~m} / \mathrm{s}$.

