## M20550 Calculus III Tutorial Worksheet 6

1. (The D-formula) Find the local maximum and the local minimum value(s) and saddle point(s) of the function $z=x^{3}+y^{3}-3 x y+1$.
2. Evaluate the double integral $\iint_{R}(4-2 y) d A$, for $R=[0,1] \times[0,1]$, by identifying it as the volume of a solid.
3. Evaluate the iterated integral.
(a) $\int_{0}^{2} \int_{0}^{\pi} r \sin ^{2} \theta d \theta d r$
(b) $\iint_{R} y e^{-x y} d A$ on $R=[0,2] \times[0,3]$
4. Find the volume of the solid in the first octant bounded by the cylinder $z=16-x^{2}$ and the plane $y=5$.
5. (Double integrals over general regions) Evaluate the following integrals:
(a) $\iint_{D} x y d A, D$ is enclosed by the curves $y=x^{2}, y=3 x$;
(b) $\iint_{D} y d A, D$ is bounded by $y=x-2, x=y^{2}$.
6. (Fubini's theorem) Change the order of integration in the following integrals:
(a) $\int_{0}^{2} d x \int_{x}^{2 x} f(x, y) d y$;
(b) $\int_{-6}^{2} d x \int_{\frac{x^{2}}{4}-1}^{2-x} f(x, y) d y$;

Hint: in the second case you may need to sketch the region and to split the integral into two integrals over smaller regions.
7. (Optional: Lagrange multipliers with two constraints) Find the maximum value of the function $f(x, y, z)=x+2 y$ on the curve of intersection of the plane $x+y+z=1$ and the cylinder $y^{2}+z^{2}=4$.

