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M20550 Calculus III Tutorial
Worksheet 6

1. (The D-formula) Find the local maximum and the local minimum value(s) and saddle
point(s) of the function z = x3 + y3 − 3xy + 1.

Solution: First, let’s find all the critical points of z = x3 + y3 − 3xy + 1:{
zx(x, y) = 3x2 − 3y = 0 =⇒ y = x2 (1)

zy(x, y) = 3y2 − 3x = 0 (2)

With y = x2, equation (2) becomes 3x4 − 3x = 0 =⇒ 3x(x3 − 1) = 0 =⇒ x =
0 or x = 1. Thus, all the critical points are (0, 0) and (1, 1).

Now, we will use the Second Derivative Test to test each critical point. We want to
compute

D(x, y) =

∣∣∣∣zxx zxy
zyx zyy

∣∣∣∣ = zxxzyy − z2xy = (6x)(6y)− (−3)2 = 36xy − 9.

And we have
D(0, 0) = −9 < 0 =⇒ (0, 0) is a saddle point.

D(1, 1) = 36− 9 > 0 and zxx(1, 1) = 6 > 0 =⇒ z(1, 1) is a local minimum.

In conclusion, the local minimum value of z is z(1, 1) = 13 + 13 − 3(1)(1) + 1 = 0.
And (0, 0) is the saddle point of z, i.e. z(0, 0) is neither a local minimum nor local
maximum.

2. Evaluate the double integral
∫∫

R
(4 − 2y)dA, for R = [0, 1] × [0, 1], by identifying it as

the volume of a solid.

Solution: Notice that z = f(x, y) = 4 − 2y ≥ 0 for 0 ≤ y ≤ 1. Thus the integral
represents the volume of that part of the rectangular solid [0, 1]× [0, 1]× [0, 4] which
lies below the plane z = 4 − 2y. We can compute this by taking the areas of the
rectangular part and the triangular part, and multiplying their sum by the “depth”
in the x-direction: ∫∫

R

(4− 2y)dA =

(
(1)(2) +

(1)(2)

2

)
(1) = 3
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3. Evaluate the iterated integral.

(a)
∫ 2

0

∫ π
0
r sin2 θ dθdr

Solution: Since the region of integration is rectangular and the function is
separable in θ and r, we can split it as a product of two integrals∫ 2

0

r dr ·
∫ π

0

sin2 θ dθ = 2 ·
∫ π

0

1

2
(1− cos 2θ) dθ = π

(b)
∫∫

R
ye−xydA on R = [0, 2]× [0, 3]

Solution: Notice that the region is rectangular, so the order of integration
doesn’t matter. However, we cannot separate this as a product of two integrals,
since x and y are mixed variables in the function (we can’t write it as a product
of two functions f(x) times g(y)).

We could try to integrate with respect to y first, but that would require inte-
gration by parts. It turns out it is easier to start with x instead:∫ 3

0

∫ 2

0

ye−xydxdy =

∫ 3

0

[−e−xy]x=2
x=0dy =

∫ 3

0

(−e−2y + 1)dy =
1

2
e−6 +

5

2

4. Find the volume of the solid in the first octant bounded by the cylinder z = 16−x2 and
the plane y = 5.

Solution: The cylinder intersects the xy-plane along the line x = 4, so in the
first octant, the solid lies below the surface z = 16 − x2 and above the rectangle
[0, 4]× [0, 5] in the xy-plane. Then

V =

∫ 5

0

∫ 4

0

(16− x2)dxdy =

∫ 5

0

dy

∫ 4

0

(16− x2)dx = 5

[
16x− 1

3
x3
]4
0

=
640

3

5. (Double integrals over general regions) Evaluate the following integrals:

(a)
∫∫

D
xydA, D is enclosed by the curves y = x2, y = 3x;

(b)
∫∫

D
ydA, D is bounded by y = x− 2, x = y2.
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Solution:

(a) Let’s find the intersection of the two curves:

x2 = 3x ⇔ x = 0, x = 3;

Since the curves are expressed in terms of x, we see that it’s easier to first
integrate with respect to y variable. To determine which curve lies above another,
one can, for instance, sketch the region.

Let’s compute the integral:∫∫
D

xyA =

∫ 3

0

dx

∫ 3x

x2
xydy =

∫ 3

0

x
y2

2

∣∣∣∣x2
3x

dx =
1

2

∫ 3

0

x(x4 − 9x2)dx =

=
1

2

∫ 3

0

x5 − 9x3 dx =
1

2

(
x6

6

∣∣∣∣3
0

− 9
x4

4

∣∣∣∣3
0

)
=

1

2

(
36

6
− 9

34

4

)
=

36

4

(
1

3
− 1

2

)
=

= −35

8
= −243

8
.

(b) Find the intersection of the curves:

y + 2 = y2 ⇔ y2 − y − 2 = 0 ⇔ y = 2, y = −1.

These curves are conveniently expressed as functions of y, so we can take the
boundaries of the inner integrals as functions of y and integrate first with respect
to x: ∫∫

D

ydA =

∫ 2

−1
dy

∫ y+2

y2
ydx =

∫ 2

−1
y(y + 2− y2)dy =

=

(
y3

3
+ y2 − y4

4

)∣∣∣∣2
−1

=

(
8

2
+ 4− 16

4

)
−
(
−1

3
+ 1− 1

4

)
=

43

12
.

Remark. To understand which curve is the upper bound and which is the lower,
sketch the region over which you integrate. In this case, the region is



Name: SOLUTIONS Date: 03/05/2020

6. (Fubini’s theorem) Change the order of integration in the following integrals:

(a)
∫ 2

0
dx
∫ 2x

x
f(x, y)dy;

(b)
∫ 2

−6 dx
∫ 2−x

x2

4
−1 f(x, y)dy;

Hint: in the second case you may need to sketch the region and to split the integral into
two integrals over smaller regions.

Solution:

(a) Sketch the region:

We see that when we change the order of integration, the upper curve is piecewise.
So, we split the region into two parts D1 and D2 so that the upper curves are not
piecewise (see the remark to the next bullet for an alternative approach). Then∫ 2

0

dx

∫ 2x

x

f(x, y)dy =

∫∫
D1∪D2

f(x, y)dA =

∫∫
D1

f(x, y)dA+

∫∫
D2

f(x, y)dA.

The first integral is ∫∫
D1

f(x, y)dA =

∫ 4

2

dy

∫ 2

y/2

f(x, y)dx;

The second integral is∫∫
D2

f(x, y)dA =

∫ 2

0

dy

∫ y

y/2

f(x, y)dx.

Thus ∫ 2

0

dx

∫ 2x

x

f(x, y)dy =

∫ 4

2

dy

∫ 2

y/2

f(x, y)dx+

∫ 2

0

dy

∫ y

y/2

f(x, y)dx.
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(b) Let’s sketch the region:

Where D1 is the region above x-axis and D2 is the region below x-axis. Let’s
write the integral over the whole region D1 ∪D2 as∫∫

D1∪D2

f(x, y)dA =

∫∫
D1

f(x, y)dA+

∫∫
D2

f(x, y)dA.

If we solve for x in y = x2/4− 1, the we obtain two branches of the parabola:

x =
√

4(y + 1) and x = −
√

4(y + 1).

Then the integral over D1 can be written as∫∫
D1

f(x, y)dA =

∫ 8

0

dy

∫ y+2

−
√

4(y+1)

f(x, y)dy,

where the number 8 is obtained from plugging into x2/4 − 4 the former lower
bound −6. The inner boundaries of the integral over D2 are the two branches of
the parabola: ∫∫

D2

f(x, y)dA =

∫ 0

−1
dy

∫ √4(y+1)

−
√

4(y+1)

f(x, y)dx.

Thus the resulting integral over D1 ∪D2 is∫∫
D1∪D2

f(x, y)dA =

∫ 8

0

dy

∫ y+2

−
√

4(y+1)

f(x, y)dy +

∫ 0

−1
dy

∫ √4(y+1)

−
√

4(y+1)

f(x, y)dx.

Remark. Instead of splitting the region into two parts, we could also define a
function

g(y) :=

{
y + 2, y ≥ 0,√

4(y + 1), −1 ≤ y ≤ 0.
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In other words, we could split the boundary itself. Then the integral could be
written as ∫ 2

−6
dx

∫ 2−x

x2/4−1
f(x, y)dy =

∫ 8

−1

∫ g(y)

−
√

4(y+1)

f(x, y)dy.

However, if we were given an actual function f(x, y) and were asked to compute
the integral, we would have to split the integral again into integrals over the two
regions so that g(y) is given by an explicit formula.

7. (Optional: Lagrange multipliers with two constraints) Find the maximum value of the
function f(x, y, z) = x + 2y on the curve of intersection of the plane x + y + z = 1 and
the cylinder y2 + z2 = 4.

Solution: Basically, the problem asks to maximize f subject to two constraints:

g(x, y, z) = x+ y + z = 1

h(x, y, z) = y2 + z2 = 4

We’ll do this problem by the method of Lagrange Multipliers: First compute

∇f(x, y, z) = 〈1, 2, 0〉
∇g(x, y, z) = 〈1, 1, 1〉
∇h(x, y, z) = 〈0, 2y, 2z〉

We know ∇f = λ∇g+µ∇h for some scalars λ, µ. So, along with the two constraints,
we have the following system of equations:

1 = λ (1)

2 = λ+ 2µy (2)

0 = λ+ 2µz (3)

x+ y + z = 1 (4)

y2 + z2 = 4 (5)

We get λ = 1 from equation (1). Putting this into equations (2) and (3), we get{
1 = 2µy

−1 = 2µz.

Adding these two equations, we get 2µy + 2µz = 0 =⇒ 2µ(y + z) = 0. So,
µ = 0 or y = −z.
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If µ = 0, then from equation (2), we have 2 = 1, a contradiction. So, µ 6= 0.

If y = −z, then equation (5) yields 2z2 = 4 =⇒ z = ±
√

2. So then y = ∓
√

2.

And from equation (4), x = 1 − y − z. So, x = 1 − (−
√

2) −
√

2 = 1 or x =
1−
√

2− (−
√

2) = 1.

So, we obtain the points (1,−
√

2,
√

2) and (1,
√

2,−
√

2).

So then,

f(1,−
√

2,
√

2) = 1− 2
√

2

f(1,
√

2,−
√

2) = 1 + 2
√

2.

Thus, the maximum value of f is 1 + 2
√

2 on the curve of intersection.


