M20550 Calculus III Tutorial Worksheet 7

1. Evaluate the given integral.

$$
\iint_{R} \arctan \left(\frac{y}{x}\right) d A
$$

where $R=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4,0 \leq y \leq x\right\}$.

Solution:

Given the geometry of region R, it's bot to compute the double integral using polar cuerdinates,
 In polar, we know $d A=r d r d \theta$ and $\arctan \left(\frac{y}{x}\right)=\arctan (\tan \theta)=\theta \quad\left(\right.$ for $\left.-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$.
From the picture of the region R, we have $1 \leq r \leq 2$. To find the upper bound for θ, we nerd to find θ in (I) quad. such that $y=x$. With $y=x$, we have $r \sin \theta=r \cos \theta \Rightarrow \sin \theta=\cos \theta \Rightarrow \theta=\frac{\pi}{4}$ for θ in (I)quad. So, $0 \leq \theta \leq \frac{\pi}{4}$, $\iint_{R}^{T h u s, ~} \arctan \left(\frac{y}{x}\right) d A=\int_{0}^{\pi / 4} \int_{1}^{2} \theta r d r d \theta=\left.\int_{0}^{\pi / 4} \frac{1}{2} r^{2} \theta\right|_{r=1} ^{r=2} d \theta=\int_{0}^{\pi / 4} \frac{3}{2} \theta d \theta=\left.\frac{3}{2} \cdot \frac{1}{2} \theta^{2}\right|_{0} ^{\pi / 4}=\frac{3}{64} \pi^{2}$
2. (a) Let E_{1} be the solid that lies under the plane $z=1$ and above the region in the $x y$ plane bounded by $x=0, y=0$, and $2 x+y=2$. Write the triple integral $\iiint_{E_{1}} x z d V$ but do not evaluate it.

Solution:

(b) Let E_{2} be the solid region in the first octant that lies under the paraboloid $z=2-x^{2}-y^{2}$. Write the triple integral $\iiint_{E_{2}} x z d V$ in cylindrical coordinates (you don't need to evaluate it).

> Solution:
> (b) Let E_{2} be the solid region in the first octant that lies under the paraboloid
3. Find the center of mass of the solid S bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=1$ if S has constant density 1 and total mass $\frac{\pi}{2}$. (Hint: \bar{x} and \bar{y} can be found by symmetry of the solid being considered).

Solution: Since the density is constantly 1, we just need to compute the average values of x, y and z inside this solid. Because the solid is rotationally symmetric about the z-axis, we get $\bar{x}=\bar{y}=0$. Now we compute

$$
\begin{aligned}
\bar{z} & =\frac{2}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\sqrt{z}} z r d r d \theta d z \\
& =\left.\frac{2}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} z \frac{r^{2}}{2}\right|_{0} ^{\sqrt{z}} d \theta d z \\
& =\frac{2}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \frac{z^{2}}{2} d \theta d z \\
& =2 \int_{0}^{1} z^{2} d z \\
& =\frac{2}{3},
\end{aligned}
$$

so the center of mass is given by $\left(0,0, \frac{2}{3}\right)$.
4. Find the volume of the solid enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=1$.

Solution: Let E denote the region given in the question. The volume of the solid is given by

$$
\begin{aligned}
V & =\iiint_{E} d V \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{1} r d z d r d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{1} z r\right|_{z=r^{2}} ^{z=1} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r-r^{3} d r d \theta \\
& =\int_{0}^{2 \pi} \frac{r^{2}}{2}-\left.\frac{r^{4}}{4}\right|_{0} ^{1} d \theta \\
& =\int_{0}^{2 \pi} 1 / 4 d z \\
& =\frac{\pi}{2} .
\end{aligned}
$$

5. Use polar coordinates to show that

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\left(x^{2}+y^{2}\right)} d A=\pi
$$

and deduce that $\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}$.

Solution: We convert to polar coordinates, remembering that $d x d y$ becomes $r d r d \theta$. For the bounds, notice the original integral covers the entire plane. Thus we have

$$
\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta
$$

which now allows us to use u-substitution (which was impossible in the original integral). We take $u=r^{2}$, so that $d u=2 r d r$. At the same time we may compute the integral over theta (which is 2π), so we have

$$
\pi \int_{0}^{\infty} e^{-u} d u=\pi
$$

Now, since the original integrand is a separable function of x and y, i.e. it may be written as a product $e^{-x^{2}} e^{-y^{2}}$, and the region of integration is rectangular, our integrals are independent and we may write the original question as

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x \cdot \int_{-\infty}^{+\infty} e^{-y^{2}} d y
$$

If we think of y as a dummy variable, we notice that this is the integral we are trying to show equal to $\sqrt{\pi}$, times itself. This proves the desired result, since we have

$$
\left(\int_{-\infty}^{+\infty} e^{-x^{2}} d x\right)^{2}=\pi
$$

so

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

6. The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on the ellipse that are nearest and farthest from the origin.

Solution: We need to find the extreme values of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ (this corresponds to distance function from origin squared) subject to the two constraints
$g=x+y+2 z=2$ and $h=x^{2}+y^{2}-z=0$. Using the gradient equation

$$
\nabla f=\lambda \nabla g+\mu \nabla h
$$

we obtain the system

$$
\left\{\begin{array}{l}
2 x=\lambda=2 \mu x \\
2 y=\lambda+2 \mu y \\
2 z=2 \lambda-\mu \\
x+y+2 z=2 \\
x^{2}+y^{2}-z=0
\end{array}\right.
$$

Solving the equations, we obtain the points $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $(-1,-1,2)$. Then we have $f\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{3}{4}$ (which is closest to the origin) and $f(-1,-1,2)=6$ (which is farthest from the origin).
7. Set up, but do not solve, the integral that gives the volume of the solid region bounded by the paraboloid $z=3 x^{2}+3 y^{2}$ and the cone $z=4-\sqrt{x^{2}+y^{2}}$.

Solution: The region of integration will be the interior of the projection of the curve of intersection of $z=3 x^{2}+3 y^{2}$ with $z=4-\sqrt{x^{2}+y^{2}}$. Setting the two equal to each other, we have

$$
3 x^{2}+3 y^{2}=4-\sqrt{x^{2}+y^{2}}
$$

and due to the appearence of sums of x^{2} and y^{2}, we choose to convert to polar coordinates. This choice is reinforced by the rotational symmetry of our solid along z-axis. Setting $x=r \cos \theta$ and $y=r \sin \theta$, the equation above becomes

$$
3 r^{2}=4-r
$$

After rearranging as $3 r^{2}+r-4=0$, we can factor it

$$
(3 r+4)(r-1)=0
$$

and the only nonnegative solution is $r=1$. Then our integral should be expressible as an integral over $\theta \in[0,2 \pi]$ and $r \in[0,1]$. We do top function (cone) minus bottom function (paraboloid), to get

$$
\iint_{R}\left(4-\sqrt{x^{2}+y^{2}}-\left(3 x^{2}+3 y^{2}\right)\right) d x d y=\int_{0}^{2 \pi} \int_{0}^{1}\left(4-r-3 r^{2}\right) r d r d \theta
$$

